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ABSTRACT

 

Non-invasive remote physiological monitoring of soldiers on the battlefield has the 

potential to provide fast, accurate status assessments that are key to improving the 

survivability of critical injuries. The development of WPI’s wearable wireless pulse 

oximeter, designed for field-based applications, has allowed for the optimization of 

important hardware features such as physical size and power management. However, 

software-based digital signal processing (DSP) methods are still required to perform 

physiological assessments. This research evaluated DSP methods that were capable of 

providing arterial oxygen saturation (SpO2), heart rate (HR), heart rate variability (HRV), 

and respiration rate (RR) measurements derived from data acquired using a single optical 

sensor. In vivo experiments were conducted to evaluate the accuracies of the processing 

methods across ranges of physiological conditions. Of the algorithms assessed, 13 SpO2 

methods, 1 HR method, 6 HRV indices, and 4 RR methods were identified that provided 

clinically acceptable measurement accuracies and could potentially be employed in a 

wearable pulse oximeter. 
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1. INTRODUCTION

 

Following serious trauma, it is critical to promptly acquire proper diagnosis and effective 

treatment in order to optimize a patient’s chance of survival. In many situations, however, 

timely and efficient medical care is not readily available. An example of an extreme 

situation is the frontline of a military conflict. With individual soldiers often spread over 

a broad region, injuries potentially occurring suddenly and without warning, and a 

perpetually hostile environment, performing efficient triage and providing effective 

treatment to wounded combatants is exceedingly challenging. 

As such, telemedicine applications have long been at the forefront of military 

research in an effort to improve the medical care received by casualties on the frontline. 

In recent years, the military has been working on a Warfighter Physiological Status 

Monitor (WPSM) [1] that will allow combat medics to monitor the physiological status 

of their soldiers, thereby potentially reducing medical response times and improving 

remote triage capabilities. 

The uses of telemedical devices can also extend to non-military applications. 

High-risk occupations can often result in situations where performing triage on injured 

individuals is challenging. Firefighters and law enforcement are often placed in harms 

way on a daily basis, and in the midst of such chaotic environments, it is often difficult to 

determine when an individual is injured, let alone to estimate the severity of the injury. In 

urban or developed regions, events such as building collapses, floods, earthquakes, and 

other natural disasters often involve mass casualties. Even with highly-trained medical 
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professionals and emergency personnel, the sheer number of injuries in such a situation 

can make efficient triage and timely treatment difficult if not impossible. 

A popular method of patient monitoring is pulse oximetry, due to its non-invasive 

nature. An additional benefit of this modality is the extensive amount of physiological 

information available through its use. While arterial oxygen saturation (SpO2) and heart 

rate (HR) measurements are typically provided by pulse oximeters, heart rate variability 

(HRV) and respiration rate (RR) information can also be extracted from sensor data. This 

poses a significant advantage in the area of remote patient monitoring since providing all 

physiological measurements from a single sensor has allowed wearable monitoring 

devices to be miniaturized for portability and field use. However, despite advances in 

hardware optimization, the digital signal processing (DSP) methods required to perform 

such physiological measurements must still be developed for custom-designed devices. 

 In order to facilitate the development of a wearable medical monitoring system, 

the research performed here covered the first step in producing a software package 

capable of performing multiple physiological measurements based on pulse oximetry 

sensor data. Specifically, SpO2, HR, HRV, and RR measurements were examined since 

they were known to provide critical patient information during medical diagnoses. The 

work consisted of assessing the accuracy of multiple processing methods that could be 

employed to measure each of the physiological parameters. Algorithms that provided 

clinically acceptable results under controlled conditions were placed in a library of 

potentially viable processing methods to allow for future assessments of their robustness 

during typical application conditions. 
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 This thesis begins by discussing the needs of field medics and the potential impact 

of implementing a wearable monitoring system in field-based applications. Current and 

developing technologies in this research area are covered first, followed by an 

examination of the fundamental techniques for extracting physiological measurements 

from photoplethysmographic (PPG) waveforms. The latter half of this thesis outlines the 

experiments that were performed, how the acquired data were used to assess the signal 

processing algorithms that were tested, and finally, the results that were derived from 

each algorithm. 

 

 3



2. BACKGROUND 

 

2.1 Military Medical Support 

2.1.1 Medical Echelons: 

As long as military conflicts exist, it is understood that soldiers sent into combat may be 

seriously wounded or killed. The United States military implements a structured medical 

response and evacuation system to provide life-saving support to troops on the battlefield. 

This system, outlined in Figure 2.1, allows for the presence of fast and effective medical 

care that is essential to maintaining the integrity of a squad, aids in the survival of critical 

injuries, and increases the success of a mission. 

 

E1:
Battlefield

(Site of Injury)

E2:
Battalion

Medical Tent

E3:
Structured

Medical Base

E4:
Hospital

in Region

E5:
Hospital
in U.S.

• First Responders 
(fellow soldier, CLS, 
combat medic)

• Focus on bleeding 
control and resusci-
tation.

• Battalion Surgeon

• Minor surgical pro-
cedures, limited 
transfusions, basic 
life support tech-
niques.

• Surgical Teams, 
OR, ICU, Nurse 
Support, Recovery 
Ward

• Advanced surgical 
procedures and 
advanced life 
support techniques.

• Full medical 
support facility.

• Constant care and 
monitoring of 
recovery.

• Full medical 
support facility with 
rehabilitation 
capabilities.

• Monitoring of 
recovery and rehabil-
itation.

E1:
Battlefield

(Site of Injury)

E2:
Battalion

Medical Tent

E3:
Structured

Medical Base

E4:
Hospital

in Region

E5:
Hospital
in U.S.

• First Responders 
(fellow soldier, CLS, 
combat medic)

• Focus on bleeding 
control and resusci-
tation.

• Battalion Surgeon

• Minor surgical pro-
cedures, limited 
transfusions, basic 
life support tech-
niques.

• Surgical Teams, 
OR, ICU, Nurse 
Support, Recovery 
Ward

• Advanced surgical 
procedures and 
advanced life 
support techniques.

• Full medical 
support facility.

• Constant care and 
monitoring of 
recovery.

• Full medical 
support facility with 
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Figure 2.1. Structure of military medical echelons. 

 

Following injury, a casualty is evacuated through multiple levels, or echelons, of 

medical care [2, 3]. The first echelon (E1) pertains to the treatment that is administered 

on the battlefield. Immediately following an injury, either the patient or the squad’s 

combat lifesaver (CLS) administers very basic first aid with an emphasis on stopping any 

bleeding and beginning fluid resuscitation. If evacuation is not immediate, the combat 
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medic, a soldier with 10-weeks to 6-months of additional medical training, may arrive on 

the scene to provide more advanced treatment such as airway management, 

cardiopulmonary resuscitation (CPR), hemostasis, or medication including pain relievers 

or antibiotics. The second echelon (E2), the first evacuation stage for an injured 

combatant, is a mobile camp located near the frontline of a conflict. Here, casualties 

receive more critical care from the battalion surgeon, a physician with advanced medical 

training, and a group of support personnel. At this stage, minor surgical procedures can 

be performed along with limited blood and fluid transfusions and advanced life support 

techniques. Should a higher degree of care be required, the casualty is transported farther 

away from the frontline to the third echelon (E3), a corps surgical hospital (CSH) at a 

structured medical base. At this facility, full surgical teams can provide specialized 

medical care based on the specifics of a patient’s injury. The resources are more 

advanced at this stage and include an operating room (OR), intensive care unit (ICU), 

nurse support, and recovery ward. The fourth echelon (E4) is a permanent hospital near 

the area of the conflict that has complete medical services and can maintain prolonged 

monitoring of the patient’s recovery. The final fifth echelon (E5) is a permanent facility 

in the United States, where the patient can recover with the support of a full rehabilitation 

program. 

2.1.2 Treatment on the Frontline: 

On the frontline, the speeds of medical response and evacuation are vital. Combat medics 

require specific critical information in order to treat casualties quickly and stabilize them 

long enough to be transported to higher echelons of medical care. Due to limited medical 
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resources, minimal training, and potentially dangerous surroundings, the focus is on 

hemostasis, CPR, and evacuation. 

Once a casualty has been identified, the medic or care-giver must locate the 

casualty and move to his position in order to provide treatment and initiate extraction 

from the area. Evaluation of the wounded combatant’s physical condition then allows for 

a preliminary diagnosis to determine physiological stability. The basic vital signs that are 

of concern to a first responder are those that indicate the functional states of the 

circulatory and respiratory systems [2]. With an individual’s physical condition assessed, 

triage is performed and the casualties are categorized according to the severity of their 

injuries and the need for specialized or advanced medical care. 

 

2.2 Significance of a Wireless Monitoring System

Away from an organized medical facility, triage can often become inefficient. Passing 

casualty information by word-of-mouth, manually performing physiological 

measurements, and assessing casualties one at a time all require substantial amounts of 

time, energy, and resources. A wireless sensor network could potentially improve the 

quality of medical care in the field by accelerating the flow of medically relevant 

information. Providing vital information to a medic could reduce the amount of time 

spent performing tasks such as manual measurements, triage on multiple casualties, and 

physically moving between casualties to assess individual conditions. 

 By using wearable wireless sensors to monitor individuals, a medic could be 

alerted to potential problems or injuries soon after they occur, reducing a caregiver’s 

response time in an emergency. During assessment of a casualty, obtaining multiple 
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physiological measurements from wearable sensors could free a medic from performing 

manual measurements and allow him to focus on stabilizing a patient and providing 

treatment. 

Remote monitoring of multiple casualties could also allow for more effective 

triage. It can often be difficult or even impossible to track the conditions of numerous 

patients even when they are all in one location. During military conflicts, casualties can 

be spread over a wide area and having a medic constantly moving between them to 

provide ongoing assessments is extremely inefficient. By receiving vital physiological 

measurements and alerts by exception as to which individuals are critically wounded, 

medics could perform remote triage on numerous patients simultaneously from a single 

location. 

In a combat environment, remote monitoring even has the potential to keep 

medics themselves from becoming injured or killed. In hostile environments, it can often 

be dangerous for a medic to move to a casualty’s location. Performing medical 

assessments using wireless sensors could aid in determining whether an injured soldier is 

alive or dead before performing a rescue. Attempting to reach a combatant that has 

already died puts unnecessary risk on the medic and other personnel. 

 

2.3 Current State of Developing Technologies 

In an effort to improve the medical care provided to combatants, the military has long 

been looking to implement a personal status monitoring system capable of tracking the 

physiological conditions of soldiers [1]. Different groups have developed systems that 

allow for remote monitoring, data processing, and control of information flow. Several 
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systems have been specifically designed with military applications in mind, while others 

are aimed at home-based care and in-hospital monitoring. 

 A research team from Dartmouth College and Dartmouth Hitchcock Medical 

Center, for example, is currently developing an Automated Remote Triage and 

Emergency Management Information System, known as ARTEMIS, for use by the 

military [4-7]. The system is based on a wireless sensor network and pulse oximetry data 

from individual soldiers. Algorithms employed by portable devices, such as a personal 

digital assistant (PDA), are designed to perform automated physiological assessments of 

combatants based on the measurements provided by the sensors. Information derived 

from these assessments is then relayed to multiple echelons of medical care through a 

mobile communications network. 

 A group at Kansas State University has also been developing a non-invasive 

physiological monitoring system based on pulse oximeter and electrocardiogram (ECG) 

modules [8-11]. Designed to facilitate home care, hospital patient observation, and 

veterinary and livestock monitoring, the system employs a wireless link between each 

wearable data logger and a central base station. The base station is configured to transfer 

data to off-site locations, such as a doctor’s office, via the internet, providing the 

capability of remote patient monitoring. 

 In addition to photoplethysmogram (PPG) and ECG data, assessing an 

individual’s physical activities has also become increasingly important. Many wearable 

medical systems are designed to monitor activity using accelerometers, gyroscopes, and 

tilt sensors [12-15]. Patient activity levels, posture, speed of movement, and falling 

events measured by these sensors can provide important information to caregivers. 
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 Much work has also been dedicated to the development of various sensor 

modalities. Acoustic sensors [16, 17] designed at the Army Research Laboratory in 

Adelphi, MD, are capable of extracting a variety of physiological measurements by 

analyzing sounds produced by the human body. A ring-based pulse oximeter sensor [18] 

being developed by a research team at MIT has the potential to combat motion artifacts 

during signal acquisition. Advanced implantable and ingestible sensors [19] are also 

currently being designed. 

 Providing patients with freedom of mobility while maintaining continuous 

monitoring is a rapidly growing desire of medical professionals. Wearable devices such 

as the AMON physiological monitor [20, 21] and the Nonin WristOx® 3100 [22] have 

been designed with these goals in mind. These wristwatch-style units allow caregivers to 

track physiological changes in high-risk patients while freeing users from the constraints 

of tethered equipment and stationary instruments. Hardware features vary between 

devices depending upon how monitoring is performed. For example, the AMON utilizes 

a wireless data link to transmit measurements and signals to medical professionals on 

demand, while the WristOx® stores data locally in non-volatile memory so it can be 

extracted and analyzed at a later point in time. 

 

2.4 The WPI Wearable Wireless Pulse Oximeter Project 

The wearable wireless pulse oximeter (WWPO) system in development at WPI is being 

designed to allow monitoring of multiple individuals who would potentially be dispersed 

over a wide region. The system, outlined in Figure 2.2, consists of a wireless network that 

connects wearable sensor modules to a central monitoring unit such as a PDA. The 
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wearable sensor modules perform non-invasive monitoring using an optical pulse 

oximeter sensor and accelerometers so that a medic or care giver using a PDA is provided 

with physiological information from the individuals within the device’s coverage area. 
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Figure 2.2. Functional diagram of the WPI WWPO. 
 

While recent technological developments have allowed for the miniaturization of 

medical devices such as pulse oximeters [23-26], significant hurdles still exist when 

attempting to implement these off-the-shelf units in field-based applications. The sizes 
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and weights of some ‘portable’ modules are unacceptable for use by individuals in the 

field, and substantial power requirements significantly limit the duration of usability of 

more compact devices. In addition, the measurement of multiple physiological 

parameters typically requires the use of multiple sensors, corresponding to an increase in 

hardware cost, weight encumbrance, and maintenance. Therefore, the development of a 

miniature, low-power, WWPO capable of monitoring multiple physiological parameters 

is a desirable solution. 

Although compact and efficient solutions currently exist for performing certain 

physiological measurements, the flexibility of commercially available development 

options is limited. Products such as the BCI-4320 and the Xpod® and ipod® available 

from Nonin, while designed for integration into larger systems, are self-contained and not 

easily modified. Thus, desirable changes to key features such as physical size and power 

consumption cannot be made. As such, the WWPO system in development at WPI 

employs a custom-designed microcontroller (μC) based hardware platform that has 

allowed such key features to be optimized for portable field-based applications. 

However, limitations in commercially available software have required custom-

designed solutions to be developed for this new hardware platform. In order to identify 

software-based processing methods capable of performing the desired physiological 

measurements, the PPG waveforms acquired from a pulse oximeter sensor had to be 

examined. The physiological factors affecting the form of the PPGs were key to 

extracting medically-relevant physiological measurements. 
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3. OPTICALLY-BASED PHYSIOLOGICAL MEASUREMENTS

 

By incorporating multiple measurements into a clinical evaluation, a more accurate 

assessment of an individual’s status can be obtained. Due to the numerous factors that 

affect its form, the PPG signal contains information pertaining to various physiological 

parameters. Several of these parameters are commonly used in medical diagnoses and 

include SpO2, HR, HRV, and RR. Presenting such medical information simultaneously to 

medics could improve diagnostic abilities and enhance treatment regimes in the field. In 

addition, utilizing a single sensor to obtain all physiological measurements would 

simplify data processing, extend battery life, and reduce cost and encumbrance by 

minimizing the hardware worn by an individual. 

 

3.1 The Photoplethysmographic Signal

PPG signals are commonly used in medical settings to obtain vital physiological 

information. These waveforms, recorded using optical sensors, contain information 

pertaining to such factors as blood oxygen content [27-30], cardiovascular activity [31-

33], and respiratory patterns [31, 33-35]. Typically, PPG signals are recorded and 

analyzed by pulse oximeters to provide SpO2 and HR measurements. 

Plethysmographic waveforms represent changes in blood volume in a given 

region of tissue. Optical sensors are commonly employed as a practical way of obtaining 

these waveforms through non-invasive means. Such optical sensors consist of a light 

source, typically a light-emitting diode (LED), and a photodetector (PD) element. The 
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light source is used to illuminate a region of tissue and the PD measures the amount of 

light exiting the tissue at a different location. 

Most illuminated constituents, such as bone, muscle, venous blood, and various 

other cellular structures, absorb a constant amount of light, since their volumes and 

densities do not change over short periods of time. The volume of the arterial blood, 

however, is modulated by the beating of the heart. Each time the heart contracts, an 

additional bolus of blood is forced through the arterial pathways. With this variation in 

arterial volume comes a proportional variation in light absorption that can be measured 

by an optical sensor. An increase in arterial blood volume causes a corresponding 

decrease in the amount of light that reaches the PD. The amount of light absorbed by the 

tissues contains two significant aspects, as shown in Figure 3.1a. The first is the constant 

absorbance, or DC component, influenced by the nonvascular tissues and residual arterial 

and venous blood volumes. The second is a modulated absorbance, or AC component, 

caused by the variations in arterial blood volume. Together, they affect the amount of 

light that illuminates the PD to produce a pulsatile waveform, as shown in Figure 3.1b. 

 

3.2 Theory of SpO2 Measurement 

Injuries sustained in a combat environment often directly affect a soldier’s cardiac and 

pulmonary systems, many times causing blood loss, hemothorax, pneumothorax, and 

other dangerous conditions [2]. Such conditions can lead to hypoxemia, depriving vital 

organs of oxygen and endangering the casualty’s life. SpO2 measurements are routinely 

employed to detect these hypoxic events before irreversible damage is caused to tissues 

and organs. 
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Figure 3.1. Graphical representations of (a) the light absorbance of tissue components 
and (b) the resulting light intensity illuminating the PD. 
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3.2.1 Hemoglobin Light Attenuation: 

Noninvasive optical estimation of arterial oxygen saturation (SaO2) by pulse oximetry is 

based on the light absorption properties of blood. Deoxyhemoglobin (Hb), which carries 

approximately 98% of the blood’s oxygen supply, changes its light absorption 

characteristics when it binds with oxygen. Pulse oximetry exploits this optical difference 

between Hb and oxygenated hemoglobin (HbO2) to estimate the percentage of arterial 

blood saturated with oxygen. As shown in Figure 3.2, the absorption spectrums of Hb and 

HbO2 differ significantly in the visible and near-infrared region of the electromagnetic 

spectrum. Hb has a substantially higher absorption profile between 600 and 805 nm, 

while HbO2 has a slightly higher absorption profile between 805 and 1000 nm. 

Wavelengths in the red (R) and infrared (IR) regions around 660 and 900 nm are 

typically used in most pulse oximetry applications [36], although variations are common 

among device manufacturers. 
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Figure 3.2. Optical absorption spectra of Hb and HbO2 in the R and IR regions [37]. 
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Blood with a low amount of oxygen contains an increased level of Hb and a 

decreased level of HbO2. As a result, the blood absorbs more light at R wavelengths and 

less light at IR wavelengths. Conversely, blood with a high amount of oxygen contains a 

reduced level of Hb and an increased level of HbO2. The blood then absorbs less light at 

R wavelengths and more light at IR wavelengths. These wavelength-based absorption 

characteristics make it possible to measure changes in SaO2 using optical means. 

3.2.2 Measurement Derivation: 

The ratio of R-to-IR light (R/IR) absorbed by arterial blood changes with SaO2 in an 

inversely proportional manner, as shown in Figure 3.3. As such, Equation 3.1 can be used 

to approximate this relationship and to calculate SpO2: 

SpO2 =  A  – B • (R/IR)                                   (3.1)  

 
Figure 3.3. Empirically-derived relationship between SaO2 and the measured R/IR ratio 
[28]. 
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where (R/IR) is the ratio of R and IR light absorbed by the arterial blood, A and B are 

calibration coefficients, and SpO2 is the estimate of SaO2. In pulse oximetry, two PPG 

signals are recorded simultaneously: one at a R wavelength and one at an IR wavelength. 

The amplitude of the AC component in a signal corresponds to the amount of light 

absorbed by the arterial blood. By measuring the pulsatile amplitude of both signals, the 

amount of light absorbed by arterial blood at each wavelength can be estimated and used 

to calculate the ratio R/IR. 

The PPG signals can be affected by a number of physiological and physical 

factors. LED intensities, PD wavelength sensitivity, and thickness or density of a tissue 

region for example, can alter the relative amplitudes of the two PPG signals. As a result, 

the amplitudes of the two AC components must be normalized. A graphical 

representation of this procedure is shown in Figure 3.4. Equation 3.2 depicts the 

equivalent mathematical function: 
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where ACR is the AC amplitude of the R signal, DCR is the DC offset of the R signal, 

ACIR is the AC amplitude of the IR signal, DCIR is the DC offset of the IR signal, and R 

is the resulting “ratio-of-ratios”. Combining Equations 3.1 and 3.2 results in Equation 

3.3, which estimates SaO2 based on normalized R and IR PPG signals. 

SpO2 =  A  – B • R  (3.3)  
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Figure 3.4. Graphical normalization of R and IR PPG signals to allow for direct 
comparison of the AC components [38]. 
 

where R is defined by Equation 3.2, A and B are coefficients derived through empirical 

calibration, and SpO2 is the resulting estimate of SaO2. 

 It should be noted that the relationship between R and SpO2 is not perfectly 

linear. However, most clinical work does not require measurements over the full range of 

SaO2. The region from 70 – 100% saturation is typically the most relevant to care-givers 

for SpO2 measurements in adults. Since the relationship in this region is very close to 

linear, it can be approximated using the linear Equation 3.3. The resulting accuracy in the 

region of interest is typically ±2% [28], which is acceptable for most clinical work. 

3.2.3 SpO2 Measurement Methods: 

An SpO2 measurement based on PPG signals requires a calculation of the normalized R 

ratio. While the form of Equation 3.3 remains constant, a variety of methods exist for 

obtaining the values used to calculate R, in particular the amplitudes of the AC 
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components of the R and IR PPG signals. Most commercial devices utilize simple 

algorithms, while a few advanced models employ more complex assessment methods. 

 Direct amplitude measurements of the pulsatile components in time-domain PPG 

signals are some of the simplest methods used for estimating an AC value. As depicted in 

Figure 3.5b, measuring the amplitudes of individual pulses [23, 39] can be used to 

provide accurate AC values. An alternative method, shown in Figure 3.5a, is to use the 

point-to-point differentials between consecutive data points [40] to measure relative 

amplitude changes between R and IR PPGs. The advantages of these methods are their 

high processing speeds and the minimal resources required to implement the algorithms. 

However, since minor variations typically exist between consecutive measurements, 

averaging is used to smooth the final results [41]. 

 

(a)

(b)

(a)

(b)

(a)

(b)

 
Figure 3.5. AC amplitude estimation based on (a) point-to-point differentials and (b) 
peak-nadir differences [28]. 
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 Various research groups have investigated alternative methods for computing 

SpO2. Rusch and Scharf [41-44] and Kim et al. [45] have examined spectral analysis as a 

potential means of performing pulse oximetry measurements. Sinusoidal-based 

transforms can be used to convert PPG signals into the frequency domain. The AC and 

DC amplitudes of the PPGs are then estimated based on the heights of the 0 Hz and 

cardiac spectral peaks, as shown in Figure 3.6. The results from these studies have shown 

that spectral analysis boasts potential improvements over time-based computations, 

including greater measurement accuracy, insensitivity to high frequency noise, and better 

stability in the presence of light motion artifacts. A number of pulse oximeter 

manufacturers, including Ohmeda [46], Nellcor [47], and Masimo [48, 49] have also 

noted that spectral analysis is a potential method of measuring SpO2. 
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Figure 3.6. Fourier transform of a PPG signal showing estimates of the AC and DC 
components. 
 

 Ohmeda has also described a technique for estimating SpO2 based on regression 

analysis [50-54]. The process involves first calculating the derivatives of the R and IR 
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PPGs, and normalizing them with their respective DC values. The normalized derivatives 

are used to generate a regression line as shown in Figure 3.7, where the R data points are 

used as the X values and the IR data points are used as the Y values. The slope of the 

resulting regression line correlates to SpO2. Unlike the standard R ratio, the relationship 

between regression slope and SpO2 is proportional; namely, a steep slope reflects a high 

SpO2, and a shallow slope reflects a low SpO2. 
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Figure 3.7. Regression analysis using PPG derivatives and showing the effects of SpO2 
changes on the regression line. 

 

 Wavelet transforms have also been shown to provide a significant amount of 

information when applied to the analysis of PPG signals [55, 56]. However, the 

difficulties associated with this type of analysis include large amounts of data, extensive 
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processing, and results that are difficult to interpret. As such, the role of wavelet 

transforms in the analysis of PPGs is still being studied. 

 Masimo has developed an advanced method of performing pulse oximetry 

measurements, denoted as SET® processing, that is based on multiple complex 

algorithms [57-59]. The adaptive DSP algorithms are dynamically selected and adjusted 

based on the measurement situation. This system was developed to improve measurement 

stability and provides more accurate results in the presence of motion artifacts [60, 61]. 

 

3.3 Theory of HR Measurement 

HR is a vital measurement during any form of trauma assessment as it provides an 

estimate of the current stability of a patient. This type of measurement is therefore very 

important for a combat medic’s ability to rapidly assess a casualty’s stability [2]. 

3.3.1 Cardiac Contributions to the PPG: 

When the heart contracts during systole, an additional bolus of blood is forced through 

the systemic circulation. These periodic fluctuations in arterial blood volume introduce a 

pulsatile component into the PPG signal, as shown in Figure 3.8. Individual pulses 

correspond to heart contractions, with the positive peaks occurring during systole and the 

negative peaks occurring at the end of diastole. It should also be noted that the frequency 

of the pulsatile component is also of significance, as it corresponds to the subject’s HR. 
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Figure 3.8. Influence of cardiac activity on the shape of the PPG. 

 

3.3.2 HR Measurement Methods: 

Due to the strong influence of cardiac activity on the pulsatile nature of arterial blood 

flow, HR measurements can readily be estimated based on the PPG signal. As such, pulse 

oximeters measure HR in addition to SpO2. 

Manufacturers such as Hewlett-Packard [62], Masimo Corporation [63-65], and 

Vitalsines International [66] have noted that PPG derivatives can be used to identify 

pulse peaks and estimate HR. As depicted in Figure 3.9, the derivative of a PPG signal 

can be employed to locate the sharp upward slope at the beginning of a cardiac event. 

The subsequent zero-crossing, indicating a slope transition, is used to determine the 

location of the peak. This method has the advantage of being consistent and robust. 
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 Individual pulse peaks can also be located by identifying local minima or maxima 

in the PPG signal. As shown in Figure 3.10, each point in the signal is assessed with 

respect to the surrounding points. If the center point is lower or higher than all 

surrounding points, a local minimum or maximum has been located, possibly indicating a 

pulse peak. The width of the processing window determines the sensitivity of the peak 

detection, with narrow windows detecting smaller, more subtle peaks that a wide window 

would overlook. The optimal window width is dependent upon the relative frequency of 

the peaks that are to be identified. This method has the disadvantages of poorer stability 

and accuracy [67] compared to other methods. 
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Figure 3.10. Identifying local maxima and minima in a PPG using a window: (a) local 
minimum found, (b) no local maximum or minimum, (c) local maximum found. 
 

 Different research groups have also taken the initiative to improve measurement 

accuracy by developing advanced processing techniques. As mentioned previously, the 

frequency of the PPG’s pulsatile component is a reflection of HR. Rusch and Scharf [41-

44] and Reuss and Bahr [68] have noted that HR measurements can be extracted using 

spectral analysis. Sinusoidal-based transforms of the PPG signal, as depicted in Figure 

3.11, typically contain a high-amplitude spike located at the cardiac frequency. The 
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potential of increased accuracy over conventional time-based assessments has also been 

noted by manufacturers such as Nellcor [47, 69]. 
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Figure 3.11. Fourier transform of a PPG signal showing cardiac spectral line. 
 

 

3.4 Theory of HRV Measurement 

HRV measurements can provide a considerable amount of information pertaining to an 

individual’s physiological state. HRV is predominantly a reflection of activity in the 

autonomic nervous system. As such, it is commonly used to monitor sympathetic 

activation [70, 71]. This is important to medical professionals because shifts in 

sympathetic and parasympathetic activity can indicate specific physiological conditions 

or events. During periods of shock or significant blood loss, for example, the sympathetic 

nervous system becomes more active in order to regulate arterial blood pressure [72]. 

Similarly, airway obstructions [73], and even sudden changes in emotional states [74], 

can be detected through changes in sympathetic tone. With respect to long-term 

monitoring and diagnosis, prolonged mental stress and cardiovascular disorders are 
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known to induce distinctly different HR fluctuation patterns when compared to 

measurements from normal individuals [75-77]. 

 Possibly the most useful application of HRV is as a pre-hospital triage tool. 

Abnormal or fluctuating HRV indices are often an indication of poor or negative patient 

outcomes [78]. Low HRVs can also be used as markers of impending physiological 

deterioration and are an independent predictor of sudden cardiac death [79]. In a 

battlefield setting, efficient casualty management is essential to maximizing a patient’s 

chances of surviving a critical injury. HRV could provide combat medics with important 

information regarding a casualty’s stability, allowing the most critical individuals to be 

treated and evacuated first, improving patient survival. 

 Since there is currently no universal agreement as to the best index of HRV [79], 

various methods of assessment are employed based on the clinical setting. HRV 

assessments can be grouped in two general categories: long-term and short-term. Long-

term evaluations typically assess data that have been collected over the course of several 

hours or days, while short-term evaluations assess only the most recent few minutes of 

data. For clinical research and to allow for comparisons between studies, however, the 

standard data size for long- and short-term studies are 24 hours and 5 minutes, 

respectively [71]. 

 Short-term HRV evaluations are considerably important when performing triage 

or monitoring potentially unstable patients, where correct prediction of imminent 

physiological deterioration can increase an individual’s chances of survival during an 

injury. Short-term HRV assessments, summarized in Table 3.1, are based on the lengths 

of heart beat intervals (NN intervals). The most common indices derived from NN 
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intervals are SDNN, SDSD, COV and RMSSD [80-82]. These measurements respond 

proportionally to fluctuations in HR and are capable of tracking fast changes in a 

patient’s status during real-time monitoring [83]. Other indices for short-term assessment 

 
Table 3.1. Summary of short-term HRV indices. 

Index Definition 
SDNN Standard Deviation of NN Intervals 
SDSD Standard Deviation of Successive 

Differences 
RMSSD Root-Mean-Square of Successive 

Differences 
SDANN Standard Deviation of Average NN 

Intervals 
SDNN Index Mean of 5-minute SDNNs over 24 hours 
COV Coefficient of Variance 
NN50 NN Intervals Greater than 50 ms 
pNN50 Proportion of NN Intervals Greater than 

50 ms 
pNN6.25% Proportion of NN Intervals with a 

Difference 6.25% of Mean Interval 
 

also exist [84, 85], but are less common and typically confined to clinical research 

environments. SDANN and SDNN index, for example, estimate the change in HR over a 

period of 5 minutes, while NN50, pNN50, and pNN6.25% specifically reflect changes in 

vagal tone over a similar length of time. 

 In a hospital setting, patient diagnosis and monitoring based on HRV are typically 

long-term in nature. Several hours of ECG are recorded and assessed using spectral 

analysis. Spectral decomposition of the recorded signals is provided by transforms such 

as the Discrete Fourier Transform (DFT), harmonic wavelet transform (HWT), or power 

spectral density (PSD) [86-88], as depicted in Figure 3.12. Low frequency signal 

fluctuations, identifiable in these transforms, correspond to activity in the autonomic 

 28



nervous system. Sympathetic activity is characterized by the power in the 0.01 – 0.15 Hz 

region (LF), while parasympathetic activity is characterized by the power in the 0.15 – 

0.5 Hz region (HF) [71, 76]. The power ratio LF/HF is by far one of the most common 

indices that is obtained through spectral analysis, although a number of other ratios are 

occasionally extracted [73, 80, 89, 90]. Regardless of the particular ratio used, a single 

parameter is provided which directly reflects changes in sympathetic and parasympathetic 

activity. 
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Figure 3.12. PSD showing LF and HF components and corresponding power ratios for 
periods when a subject was (a) laying down and (b) standing upright [71]. 
 

 

3.5 Theory of RR Measurement 

The RR measurement is a vital diagnostic tool. During injury or trauma, substantially 

elevated or reduced RR values can indicate impending detrimental changes to an 
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individual’s status [2]. As such, these measurements have been found to be a useful triage 

tool prior to arrival at a medical facility and vital to medical personnel in the field [91]. 

Many methods currently exist for monitoring the RR of a subject. Most methods 

measure either direct airflow through the mouth and/or nasal passages, or the expansion 

of the chest or abdomen due to respiratory effort [92, 93]. The sensors utilized for these 

measurements typically consist of thermistors and pressure transducers for sensing the 

temperature and pressure changes due to oral and nasal airflow, ECG or comparable 

electrodes to measure variations in thoracic impedance, or resistive straps and pressure 

bulbs to record expansion of the chest and/or abdomen. These methods of monitoring 

respiratory activity are ill-suited for use in a harsh battlefield environment, since 

moderate activity levels can affect their accuracy. In addition, the hardware employed is 

often unwieldy and can hinder soldiers from performing normal activities. 

The activity of the pulmonary system directly influences the flow and volume of 

blood in the cardiovascular pathways. As a result, the PPG signal is affected by 

respiratory activity. Due to the complexity of the cardio-pulmonary interactions, such 

activities cause several distinct changes to the PPG waveforms. With these considerations 

in mind, pulse oximeter sensors have proven to be a potential alternative for RR 

monitoring [94]. 

3.5.1 Cardio-Pulmonary Interactions: 

A spontaneous respiratory cycle induces pressure changes in the intrathoracic cavity [31]. 

During inspiration, contraction of the diaphragm and expansion of the rib cage induce a 

pressure drop in the chest cavity. Air is pulled from the external environment into the 

lungs while blood is drawn into the pulmonary vessels from the venous pathways through 
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the right side of the heart. As a result, a drop in the peripheral venous pressure occurs. On 

the left side of the heart, stroke volume decreases as blood pools in the pulmonary 

vessels, while beat intervals are shortened due to constriction of the heart by the lungs. 

Conversely, during expiration, the opposite physiological reactions occur. The increase in 

intrathoracic pressure and compression of the pulmonary vessels cause the peripheral 

venous pressure to rise. Blood is forced into the left side of the heart, increasing stroke 

volume, while beat-to-beat intervals increase in duration. 

 Nitzan et al. [34] have shown that, due to the nature of cardio-pulmonary 

interactions and their effects on cardiovascular blood flow, three prominent fluctuations 

in the PPG signal can be linked to respiratory activity. Fluctuations and variations in the 

baseline, the pulse amplitudes, and the pulse intervals (i.e., cardiac period) of a PPG 

signal are strongly influenced by respiratory activity. Examples of these effects are 

shown in Figure 3.13. 

 Other groups, such as Johansson et al. [35, 95-97] and Chang et al. [98], have 

examined respiratory-induced intensity variations (RIIV) in the PPG and their 

correlations with various physiological changes. They found that baseline modulations in 

the PPG signals are closely correlated with multiple aspects of cardio-pulmonary 

interaction including changes in blood pressure and tidal volume. In addition, variations 

in breathing style such as thoraco-abdominal separation differences, apnea, and airway 

obstruction induce distinctly identifiable changes in the RIIVs. 
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Figure 3.13. Effects of cardio-pulmonary interactions on the PPG: (a) respiratory 
waveform, (b) PPG waveform, (c) baseline modulation, (d) peak amplitude modulation, 
(e) HR modulation. 
 

 Ahlstrom et al. [99] and Zhang et al. [100] have also observed that cardiac 

frequency fluctuations have strong correlations to respiratory patterns. They have shown 

that measurements obtained through PPG analysis are typically more accurate compared 

to other cardiovascular assessments based on pulse transit time (PTT) and ECG. 
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3.5.2 RR Measurement Methods: 

Two separate steps are typically required to obtain RR measurements from PPG signals. 

The first step involves extracting a waveform from the PPG signal that accurately 

represents respiratory activity. The second step consists of analyzing the waveform to 

determine the RR. Different groups have investigated various methods of performing 

both waveform extraction and analysis. 

 Low-frequency baseline modulations are one of the most readily observed effects 

of cardio-pulmonary interactions in the PPG. Since RR typically resides within a limited 

range of frequencies, filters can be readily employed to isolate corresponding baseline 

fluctuations. Barschdorff and Zhang [101], for example, used a simple analog low-pass 

filter (LPF) to remove signal components that did not correspond to respiratory 

frequencies. The resulting waveform was then processed using a Fast Fourier Transform 

(FFT) to assess respiratory frequency, as depicted in Figure 3.14b. Conversely, Nakajima 

et al. [33] chose to employ a dynamic set of software-based digital high-pass filters 

(HPF) and LPFs to isolate RIIVs. Post-processing consisted of performing peak detection 

to measure the durations of each respiratory cycle. This time-based processing technique 

is shown in Figure 3.14a. 

 Experiments performed in various labs [94, 98] and work done by Nitzan et al. 

[34] and Murray and Foster [31] have shown that the peak amplitude fluctuations of the 

PPG can also be readily employed to provide RR information. The positive envelope of 

the PPG can reflect breathing patterns and be used to identify the predominant respiratory 

frequency through time- or spectral-based analysis. 
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Figure 3.14. The two primary methods of assessing respiratory waveforms: (a) 
measuring individual breathing cycle intervals and (b) performing spectral analysis. 
 

 As noted by Nitzan et al. [34], cardiac period fluctuations contain a substantially 

higher amount of power when compared to baseline and amplitude modulations in the 

PPG signal. Whitney and Solomon [102] have demonstrated that these cardiac 

fluctuations can be extracted and used to measure RR. Their post-processing methods 

were based around spectral analysis. FFTs and periodograms were used to assess the 

respiratory frequencies of the waveforms and provided accurate results. 
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4. RESEARCH OBJECTIVES 

 

While steady progress has been made in the development of an optimized hardware 

structure for a wearable pulse oximeter, limitations in commercially available software 

solutions still exist. The processing software employed by manufacturers to perform 

physiological measurements can be expensive, proprietary, and does not provide all the 

measurement features desired in a wearable pulse oximeter. As a result, the newly-

developed hardware platform designed at WPI requires custom-developed software 

routines to perform physiological measurements based on sensor data. Therefore, the goal 

of this research was the development of a library of software-based processing methods 

that could be employed to advance the development of the WPI wearable pulse oximeter 

that is being designed for military and mass casualty applications. The specific research 

objectives were to: 

 

Objective 1:  Evaluate and characterize a set of software-based processing methods 

capable of measuring SpO2 based on a set of PPG signals. 

 

Objective 2:  Evaluate and characterize a set of software-based processing methods 

capable of measuring HR based on a set of PPG signals. 

 

Objective 3:  Evaluate and characterize a set of software-based processing methods 

capable of measuring HRV based on a set of PPG signals. 
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Objective 4:  Evaluate and characterize a set of software-based processing methods 

capable of measuring RR based on a set of PPG signals. 

 

The primary steps necessary to achieve each of these objectives were to: 

• Compile a list of processing methods that could potentially perform the given 

measurement. 

• Perform a set of in vivo experiments to record PPG waveforms and corresponding 

reference measurements for the physiological measurement of interest. 

• Assess the accuracies of the methods using the recorded PPG waveforms and 

reference values. 
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5. SUPPORT EQUIPMENT

 

5.1 Recording Hardware 

5.1.1 BIOPAC Data Acquisition System: 

A BIOPAC data acquisition system was used to record PPG signals during most 

experiments and to obtain reference measurements for HR, HRV, and RR. The central 

monitoring unit was a model MP100 Workstation controlled using the AcqKnowledge 

v3.7.3 software program running on a Windows operating system. The primary 

advantages of this recording system were the types of sensor modules available for use 

and its ability to record data simultaneously from multiple sources. The flexibility of the 

software controls for setting sampling rates and automatic recording intervals was also a 

benefit. The general setup of the BIOPAC system is shown in Figure 5.1. 

BIOPAC MP100
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Modules

Sensors

Recording
Computer

BIOPAC MP100

ECG PPG RSPSensor
Modules

Sensors
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Figure 5.1. General recording setup for experiments using a BIOPAC recording system. 
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 Three sensor modules were used during the various experiments to record 

physiological signals. An ECG100 module was used to record ECGs from a standard 

Lead I setup. A PPG100 module was connected to a TSD100B infrared (IR) optical 

reflectance sensor to record PPG waveforms. An RSP100 module was used to record 

signals from a TSD101 Pneumotrace® chest strap that provided information regarding 

breathing patterns. 

5.1.2 Photoplethysmogram Signal Processing Unit: 

The photoplethysmogram signal processing unit (PSPU) is a hardware-based signal 

processing device that uses an optical pulse oximeter sensor to acquire PPG-related 

waveforms. The unit was used during SpO2-based experiments to provide R and IR PPG 

signals. Different hardware units could not be used during such experiments since they 

provided only one PPG signal, which was insufficient for monitoring SpO2. The general 

structure of the PSPU is shown in Figure 5.2. 
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Figure 5.2. General structure of the PSPU. 
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5.1.3 Nonin Xpod®: 

A Nonin Xpod® pulse oximeter module, model number 3012, was utilized to provide 

reference SpO2 measurements during experiments. The Xpod® was used over other 

reference oximeters due to its readily available serial data stream. The unit provided 

continuous measurement data through an RS-232 serial interface that was easily 

monitored using computer-based recording software. 

 

5.2 Software Environments

5.2.1 LabVIEW: 

The LabVIEW programming environment, Version 7.1, was used for data acquisition and 

display. Simple construction of software-based interfaces and ready access to analog and 

serial inputs made this environment ideal for recording data from multiple sources that 

used different communication mediums, a task that would have been difficult with other 

software platforms. 

5.2.2 Matlab: 

Matlab, version 6.5, provided a flexible workspace in which to perform offline data 

analysis. The ability to work with large data sets, formulate custom programs, and graph 

and display waveforms and results for visual inspection allowed for efficient analysis 

procedures when assessing the accuracies of the various processing methods. Software 

filters employed in certain analyses were designed and constructed using Matlab’s 

FDATool program since the filter coefficients could be easily transferred to and 

implemented in the core Matlab environment. 
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6. EXPERIMENTAL SETUPS

 

6.1 SpO2 Experiments 

R and IR PPG data, as well as reference SpO2 measurements, were required to assess the 

accuracy of the SpO2 processing methods. A series of in vivo experiments were 

performed to obtain data over a range of SpO2 values typically monitored for clinical 

purposes. 

6.1.1 Experimental Setup: 

A Nonin Xpod® pulse oximeter was used to obtain reference SpO2 values from a 

transmission-mode optical sensor attached to the subject’s index finger since this is the 

gold standard for monitoring SpO2 levels. A Nonin reflectance-mode optical sensor was 

also secured to the subject’s forehead using an elastic headband. This sensor was 

monitored by the photoplethysmogram signal processing unit (PSPU) which could 

provide both R and IR waveforms required to perform an SpO2 measurement. Since the 

data being recorded consisted of both analog signals and serial data, a LabVIEW program 

was used to acquire and store the data from both sources simultaneously. Figure 6.1 

depicts the experimental setup. Separate AC and DC signals corresponding to the R and 

IR PPG signals were recorded from the PSPU at a rate of 75 s/s, the sampling rate used 

by the sensor control routine in WPI’s custom pulse oximeter. Reference SpO2 values 

were recorded from the Xpod® once a second. 
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Figure 6.1. Experimental setup to acquire SpO2 data. 
 

6.1.2 In Vivo Experiments: 

Data were acquired from 3 healthy male volunteers, ages 24 – 25. During data recording, 

subjects were seated comfortably in a chair with their arms resting on the armrests. To 

assess the relationship between reference SpO2 values and measured SpO2 values, each 

subject was instructed to perform a breath-holding maneuver to induce a noticeable drop 

in SpO2. A 20 second baseline reading was recorded while each subject was breathing 

spontaneously. Following the baseline recording, each subject was instructed to 

hyperventilate for about 15 seconds, and then hold his breath for as long as possible to 

induce hypoxemia. Following the breath-holding period, each subject resumed 

spontaneous breathing for 20 seconds to allow the SpO2 readings to return to normal. 

SpO2 values were monitored during each pause in breathing to ensure that a drop in the 

oxygen level was noticeable. If a significant drop in SpO2 was not induced, the data were 

discarded and the experiment was repeated. A total of three successful data sets were 

recorded. 
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6.2 HR Experiments

PPG data, as well as reference HR measurements, were required to assess the accuracy of 

the HR processing methods. A series of in vivo experiments were performed to obtain 

data over a range of HR values typical of healthy individuals. 

6.2.1 Experimental Setup: 

The BIOPAC data acquisition system was used in this experimental setup since it was 

capable of recording PPG and ECG signals simultaneously. An optical sensor, held in 

place on the subject’s forehead by an elastic band, provided an IR PPG waveform since 

only a single PPG signal was required to perform HR measurements. Disposable ECG 

electrodes were also attached to the subject and used to record standard Lead I ECG 

waveforms. Figure 6.2 depicts the experimental setup. The waveforms were recorded at a 

rate of 200 s/s since the ECG signals required a high sampling rate due to their high 

frequency components. Since the BIOPAC system did not perform any advanced signal 

processing, the ECG waveforms had to be processed offline in Matlab in order to provide 

reference HR measurements. 
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Figure 6.2. Experimental setup to record HR and HRV data. 
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6.2.2 In Vivo Experiments: 

Data were acquired from 3 healthy male volunteers, ages 23 – 25. To assess various 

levels of HR, two recording sessions were performed. During the first session, 9 

recordings were made while each subject was resting comfortably in a chair. Each 

recording lasted 3 minutes. During the second session, subjects were instructed to 

perform light exercises in order to increase their HR. A 1 minute recording was made to 

establish a baseline. Each subject was asked to jog in place for 30 seconds, after which 

another 1 minute baseline recording was made. Lastly, each subject was asked to jog in 

place for 60 seconds before a final 1 minute baseline recording was made. Each subject 

performed 3 consecutive exercise-based experiments. 

 

6.3 HRV Experiments 

PPG data and reference measurements were required to assess the accuracy of the HRV 

processing methods. A series of in vivo experiments were performed to obtain data over a 

range of HRV values typical of healthy individuals. 

6.3.1 Experimental Setup: 

The recording setup for the HRV experiments was identical to the one used in the HR 

experiments and is depicted in Figure 6.2. The waveforms were recorded at a rate of 200 

s/s since the ECG signals required a high sampling rate due to their high frequency 

components. Since the BIOPAC system did not perform any advanced signal processing, 

the ECG waveforms were analyzed offline by a LabVIEW-based software program [84, 

85] that provided reference HRV values for the experiments. 
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6.3.2 In Vivo Experiments: 

Data were acquired from 22 healthy volunteers, 19 males and 3 females, ages 20 – 36. To 

assess various levels of HRV, 3 controlled breathing exercises were performed. Twenty-

seven recordings were made while each subject was resting comfortably and breathing at 

a normal tidal rate. Recordings were also acquired while 5 subjects were instructed to 

hold their breath for about 30 seconds. Lastly, recordings were also made while 5 

subjects took short but deep breaths for about 30 seconds. Each experimental recording 

lasted a total of 5 minutes, the standard interval used for short-term HRV assessments. 

 

6.4 RR Experiments

PPG data and reference RR measurements were required to assess the accuracy of the RR 

processing methods. A series of in vivo experiments were performed to obtain data over a 

range of RR values typical of healthy individuals. 

6.4.1 Experimental Setup: 

The BIOPAC data acquisition system was used in this experimental setup since it was 

capable of recording PPG and respiratory waveforms simultaneously. An optical sensor, 

held in place on the subject’s forehead by an elastic band, provided an IR PPG waveform 

since only a single PPG signal was required to perform RR measurements. An elastic 

PneumotraceTM respiration transducer was secured around the subject’s chest using 

Velcro tabs in order to acquire a reference signal indicative of the subject’s breathing 

pattern. Figure 6.3 depicts the experimental setup. The waveforms were recorded at a rate 

of 75 s/s, the sampling rate used by the sensor control routine in WPI’s custom pulse 

oximeter. Since the BIOPAC system did not perform any advanced signal processing, the 
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respiratory waveforms obtained from the chest strap had to be processed offline in 

Matlab in order to provide reference RR measurements. 
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Figure 6.3. Experimental setup to record RR data. 
 

6.4.2 In Vivo Experiments: 

Data were acquired from 5 healthy volunteers, 4 males and 1 female, ages 21 – 55. 

During the time that data were recorded, subjects were seated comfortably in a chair with 

their arms resting on the armrests. Preliminary readings were observed visually to ensure 

that the sensors were producing strong and stable PPGs during spontaneous breathing. 

Subjects were asked to refrain from talking, coughing, swallowing, sneezing, and any 

other activity that could interrupt their breathing patterns. Before each session, 

preliminary readings from each sensor were inspected visually to confirm that the signal 

amplitude remained acceptable. Adjustments to the sensors were then made as needed. 

 During each 90-second recording session, each subject was instructed to maintain 

a constant breathing rate and a spontaneous tidal volume. An analog clock was used for 

timing, with tape marks indicating the starting points of each breathing cycle. Each 

subject performed the experiment 15 times by breathing from 6 to 20 breaths-per-minute, 

resulting in a total of 75 recordings. 
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6.5 A Note on Experiment Subjects 

Due to some limitations in the number of subjects that were available for the in vivo 

experiments, some subjects were required to provide multiple data sets in addition to 

performing physical activities to alter their physiological states. Fortunately, this study 

characterized the correlations between processing method measurements and reference 

measurements instead of the differences between individual subjects. The recorded data 

were used to assess measurement accuracies across a range of physiological levels, for 

example, HRs between 60 and 120 bpm. Since these assessments were based on pairs of 

measurements each obtained simultaneously from a single individual, the specific subject 

providing the data was not relevant. The number and ages of subjects in an experiment 

were therefore unimportant as they did not influence the comparisons between 

measurements and reference values. If further experiments were to be performed to 

characterize the differences in physiological levels between individuals, then the specific 

number of subjects would be relevant. 
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7. PROCESSING METHOD ASSESSMENTS 

 

7.1 Assessment Procedures 

The data obtained from the in vivo experiments were used to evaluate the measurement 

accuracies of the processing methods. The accuracy assessments were performed in 

Matlab since the environment could handle large data sets and also allowed the 

processing methods to be implemented in individual program files (see Appendix A). 

With this software platform, the processing methods were used to analyze the PPG 

signals recorded during the experiments. For purposes of comparison, all processing 

methods that provided a given type of measurement (e.g., HR) analyzed the same 

recordings. The resulting measurements obtained from each method were plotted against 

corresponding reference measurements to assess accuracy. The accuracy of a method was 

described using the R2 value, bias, and the standard error of the estimate (SEE). Student’s 

t-test was used to determine if a significant difference existed between each set of 

measured values and corresponding reference values;  p < 0.05 was considered 

significant. 

 

7.2 SpO2 Processing Methods 

Of the processing methods described in section 3.2, not every method was selected for 

evaluation. Since the measurement techniques had to be implemented in a μC 

environment with limited resources, SET® processing was not tested because this 

algorithm requires extensive resources to perform its analyses. Wavelet transforms were 

removed from the assessment list as well since they are still being examined with regards 
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to their usefulness in pulse oximetry [46, 57-58]. Spectral analysis potentially required 

large amounts of memory and computation time [43-44], however, an optimized analysis 

[45] form was employed in order to reduce processing overhead. As a result, this method 

was further evaluated as a potential method of measuring SpO2. Table 7.1 lists the SpO2 

processing methods tested in this section. 

7.2.1 SpO2 Calculation: 

Analysis of PPG signals to determine SpO2 involved two initial steps: measurement of 

the DC and AC components. Once these values were obtained from both the R and IR 

PPGs, the ratio R was calculated using Equation 3.2. The instantaneous R values 

produced by a given processing method were plotted against corresponding instantaneous 

reference SpO2 values obtained from the Nonin Xpod®. The linear regression equation 

derived from the comparison was used to convert the R values to SpO2 values, providing 

the final measurements for the processing method. Table 7.2 summarizes the results of 

the assessments. 

7.2.2 Analysis Windows: 

Several processing methods performed analyses based on PPG segments that were 

selected using a rectangular window. In order to ensure accurate results, a full pulse cycle 

had to be present within the window. The minimum HR of interest was 30 bpm, 

corresponding to a beat duration of 2 seconds. To guarantee that at least one positive and 

one negative pulse peak was present in any given window, the window width was set to 3 

seconds. All window-based processing methods employed a 3-second window. 
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Table 7.1. List of processing methods capable of providing SpO2 measurements. 

Processing Method General Description 
DC Measurement:  
Moving Average [41] The mean value of a section of PPG. 
LPF The result of a low-pass filtered PPG. 
Window Minimum The minimum value in a section of PPG. 
AC Measurement:  
PPG Differentials [23, 28, 39] The mean amplitude difference between consecutive 

sample points in a PPG. 
Pulse Amplitudes [28, 40] A measure of the peak-to-peak amplitude of individual 

cardiac pulses. 
Regression Analysis [51-54] The regression slope generated by comparing R and IR 

PPG derivatives. 
Window Analysis The difference between the maximum and minimum 

values in a section of PPG. 
AC and DC Measurement:  
Spectral Analysis [41-45] A measure of the power contained in the cardiac 

frequency and DC offset. 
 

7.2.3 DC Measurements: 

Three different processing methods were employed to measure the DC components of 

PPG signals. The baselines and average offsets of the signals could both be used to 

estimate these DC values and were used to normalize the AC measurements obtained 

through other methods. 

 The first method was a moving average. A 3-second window of the most recent 

PPG samples was averaged to produce a DC value. This calculation was performed as 

required by the AC processing methods. 

 The second method used a LPF to track the DC level of a PPG. The chosen filter 

was an IIR Butterworth which allowed for a reduced number of coefficients compared to 

FIR filters and a smooth passband with no significant ripple. A cutoff of 0.1 Hz was used 

to remove the high-frequency pulsatile component generated by cardiac activity. A 5th 

order filter was required to maintain stability. 
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 The third processing method followed the baseline of the PPG. The minimum 

value in a 3-second window of the most recent PPG samples was used as a DC value. 

This calculation was performed as required by the AC processing methods. 

7.2.4 AC Measurements: 

Five different processing methods were employed to measure the pulsatile amplitudes of 

the R and IR PPGs. Once measured, the AC values were normalized using the results 

obtained from the above DC measurements. The normalized AC measurements were 

used to calculate R values which were converted to SpO2 values based on the empirical 

relationship between R and SpO2. Four of the AC measurement methods were paired 

with each of the three DC measurement methods, as shown in Table 7.2, resulting in a set 

of 13 unique processing methods that provided SpO2 measurements once every second. 

7.2.5 PPG Differentials: 

Using differentials to estimate AC amplitude first involved calculating the absolute 

derivative of a PPG, as demonstrated in Figure 7.1. During a single analysis, 3 seconds of 

the absolute derivative were averaged to produce an AC measurement. AC values from R 

and IR PPGs were normalized with their respective DC values and used to calculate the 

R values. To assess method accuracy, the calculated R values were converted to SpO2 

measurements and plotted against corresponding reference SpO2 values, as shown in 

Figures 7.2 – 7.3. 
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Figure 7.1. Relative PPG with corresponding derivative and absolute derivative. The 
marked derivative average is used as an AC value. 
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Figure 7.2. SpO2 measurements based on PPG differentials normalized using (a) a 
moving average, (b) LPF, and (c) window minimum. Regression lines (─) and lines of 
identity (---) are shown for comparison. 
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Figure 7.3. Residual data plots from SpO2 measurements based on PPG differentials 
normalized using (a) a moving average, (b) LPF, and (c) window minimum. 
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7.2.6 Pulse Amplitudes: 

Individual pulses of a PPG were first identified using signal derivatives. As demonstrated 

in Figure 7.4, the amplitude difference between the peak and nadir of a pulse was 

measured and used as an AC value. AC values from the R and IR PPGs were normalized 

with their respective DC values and used to calculate R values. To assess method 

accuracy, the calculated R values were converted to SpO2 measurements and plotted 

against reference SpO2 values, as shown in Figures 7.5 – 7.6. 
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Figure 7.4. The amplitude of a pulse measured as the difference between the peak and 
the nadir. 
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Figure 7.5. SpO2 measurements based on pulse amplitudes normalized using (a) a 
moving average, (b) LPF, and (c) window minimum. Regression lines (─) and lines of 
identity (---) are shown for comparison. 
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Residual Plot
AC: Pulse Amplitudes,  DC: Moving Average

-5

-4

-3

-2

-1

0

1

2

3

4

5

84 86 88 90 92 94 96 98 100

Reference SpO2 (%)

D
iff

er
en

ce
s 

(%
)

Mean  =  0.0037
SD  =  ± 0.79

N = 291

(a)

 

Residual Plot
AC: Pulse Amplitudes,  DC: LPF

-5

-4

-3

-2

-1

0

1

2

3

4

5

84 86 88 90 92 94 96 98 100

Reference SpO2 (%)

D
iff

er
en

ce
s 

(%
)

Mean  =  0.0022
SD  =  ± 0.82

N = 291

(b)

 

Residual Plot
AC: Pulse Amplitudes,  DC: Window Minimum

-5

-4

-3

-2

-1

0

1

2

3

4

5

84 86 88 90 92 94 96 98 100

Reference SpO2 (%)

D
iff

er
en

ce
s 

(%
)

Mean  =  -0.0016
SD  =  ± 0.78

N = 291

(c)

 

Figure 7.6. Residual data plots from SpO2 measurements based on pulse amplitudes 
normalized using (a) a moving average, (b) LPF, and (c) window minimum. 
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7.2.7 Regression Analysis: 

Regression analysis involved comparing the derivatives of the R and IR signals. During a 

single analysis, the most recent 3 seconds of both derivatives were normalized with their 

respective DC values. As demonstrated in Figure 7.7, the normalized derivatives were 

used to calculate a regression slope with the R values plotted on the x-axis and the IR 

values plotted on the y-axis. The regression slope was converted to an angle measurement 

and used in place of an R value when deriving the empirical SpO2 relationship. Method 

accuracy was assessed by plotting measured SpO2 values against corresponding reference 

SpO2 values, as shown in Figures 7.8 – 7.9. 
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Figure 7.7. Regression analysis of R and IR derivatives. 
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Figure 7.8. SpO2 measurements based on regression analysis normalized using (a) a 
moving average, (b) LPF, and (c) window minimum. Regression lines (─) and lines of 
identity (---) are shown for comparison. 
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Residual Plot
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Figure 7.9. Residual data plots from SpO2 measurements based on regression analysis 
normalized using (a) a moving average, (b) LPF, and (c) window minimum. 
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7.2.8 Window Analysis: 

During a single analysis, a 3-second window spanning the most recent data points in a 

PPG was assessed. As shown in Figure 7.10, the difference between the maximum and 

minimum values in the window was used as an AC value. AC values from the R and IR 

PPGs were normalized with their respective DC values and used to calculate the R 

values. To assess method accuracy, the calculated R values were converted to SpO2 

measurements and plotted against corresponding reference SpO2 values, as shown in 

Figures 7.11 – 7.12. 
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Figure 7.10. The difference between the maximum and minimum values in a 3-second 
window. 
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Figure 7.11. SpO2 measurements based on a window analysis normalized using (a) a 
moving average, (b) LPF, and (c) window minimum. Regression lines (─) and lines of 
identity (---) are shown for comparison. 
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Residual Plot
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Figure 7.12. Residual data plots from SpO2 measurements based on window analysis 
normalized using (a) a moving average, (b) LPF, and (c) window minimum. 
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7.2.9 Spectral Analysis: 

An optimized analysis form was employed during spectral analysis. The optimization 

consisted of processing every 5th data point in the PPG using a 64-point FFT. This 

resulted in a transform that assessed 4.3 seconds of a PPG signal while still providing 

information over the full span of the cardiac frequency range (0.5 – 5 Hz). As shown in 

Figure 7.13, the AC value from the transformed PPG was considered to be the amplitude 

of the highest peak in the cardiac frequency range. This value was normalized using the 

amplitude of the 0 Hz (DC) component. Spectral analysis was performed on both the R 

and IR PPGs to obtain the normalized AC values. The normalized AC measurements 

were used to calculate the corresponding R values. To assess method accuracy, the 

calculated R values were converted to SpO2 measurements and plotted against reference 

SpO2 values, as shown in Figures 7.14 – 7.15. 
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Figure 7.13. PPG and corresponding FFT with marked amplitudes used as AC and DC 
values. Note that the top waveform consists of every 5th data point from the original 
signal, essentially making it a PPG that has been sampled at a rate of 15 Hz. 
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Spectral Analysis
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Figure 7.14. SpO2 measurements based on spectral analysis with resulting regression 
line (─) and line of identity (---). 
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Figure 7.15. Residual data plot from SpO2 measurements based on spectral analysis. 
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Table 7.2. Assessment results for SpO2 processing methods. 

AC 
Measurements 

DC 
Measurements R2 Value Bias 

(%) 
SEE 
(%) 

Moving 
Average 0.96 -0.0007 0.84 

LPF 0.97 0.0001 0.82 Differentials 
Window 
Minimum 0.96 -0.0028 0.91 

Moving 
Average 0.97 0.0037 0.82 

LPF 0.97 0.0022 0.91 Pulse 
Amplitudes 

Window 
Minimum 0.97 -0.0016 0.81 

Moving 
Average 0.92 0.0019 1.37 

LPF 0.96 -0.0008 1.11 Regression 
Analysis 

Window 
Minimum 0.95 0.0001 0.96 

Moving 
Average 0.90 -0.0021 1.38 

LPF 0.90 -0.0030 1.41 Window 
Analysis 

Window 
Minimum 0.89 0.0002 1.44 

Spectral 
Analysis 

Spectral 
Analysis 0.96 -0.0040 0.84 
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7.3 HR Processing Methods 

The processing methods described in section 3.3 required only one PPG signal to perform 

assessments of HR activity. IR PPGs were selected for analysis due to their consistently 

larger amplitudes compared to corresponding R PPGs. The IR PPGs recorded during the 

HR experiments were divided into 1-minute segments. All segments were processed by 

each method to obtain average HR measurements. Table 7.3 lists the processing methods 

used to measure average HR based on the PPGs. Table 7.4 summarizes the results of the 

assessments. 

 
Table 7.3. List of processing methods capable of providing HR measurements. 

Processing Methods General Description 
Moving Window [67] The comparison of each consecutive point in a PPG to 

its surrounding values in order to locate local maxima or 
minima. 

Signal Derivative [62-66] Using the derivative of the PPG to identify the steep 
slopes at the leading edges of cardiac pulses. 

Spectral Analysis [41-44, 68] Estimation of HR based on the predominant cardiac 
frequency. 

 

7.3.1 Moving Window: 

An adaptive window with a varying width was used to locate individual pulse peaks in 

the PPG signals. The window scanned a PPG signal by moving 1 data point at a time. 

After each move, the maximum value in the window was located. If the maximum value 

was in the center of the window, that data point was marked as a peak. To account for 

variations in HR, the width of the processing window was adjusted every time a peak was 

located. The new window width was set to half the length of the previous beat-to-beat 

interval, as demonstrated in Figure 7.16b. This reduced the chances of a peak being 

overlooked while maintaining a reduced sensitivity to noise and signal irregularities. 
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Figure 7.16. Using an adaptive window to locate pulse peaks. (a) Searching for a peak. 
(b) Adapting the window’s width after locating a peak. (c) Searching for next peak using 
the new window. 
 

 The number of identified peaks in each 60-second recording were counted and 

provided a measure of the average HR in beats-per-minute. To assess method accuracy, 

HR measurements from the data sets were plotted against corresponding reference HR 

values obtained through the BIOPAC, as shown in Figures 7.17 – 7.18. 

7.3.2 Signal Derivative: 

The derivatives of the PPG signals were used to identify individual pulse peaks. The 

derivative of a PPG was assessed 1 data point at a time by comparing the point to a 

threshold value. When the value of a point exceeded the threshold, it indicated that the 
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HR Results:  Moving Window
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Figure 7.17. HR measurements obtained using an adaptive moving window with 
resulting regression line (─) and line of identity (---). 
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Figure 7.18. Residual data plot from HR measurements based on an adaptive moving 
window. 
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steep slope at the leading edge of a pulse had been located. The following zero-crossing 

in the derivative was marked as a peak. Figure 7.19 shows an example of peaks identified 

in this way. To account for variations in slope intensity due to changes in HR and pulse 

shape, the threshold was adjusted every time a peak was located. The new threshold was 

set to half the height of the current pulse’s maximum slope. This minimized noise and 

minor signal irregularities from being identified, while the chances of missing a leading 

pulse edge due to a shallow slope were also reduced. 

 The number of identified peaks in each 60-second recording were counted and 

provided a measure of the average HR in beats-per-minute. To assess method accuracy, 

HR measurements from the data sets were plotted against corresponding reference HR 

values obtained through the BIOPAC, as shown in Figures 7.20 – 7.21. 
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Figure 7.19. The identification of pulse peaks using a PPG derivative and the adaptation 
of the derivative’s threshold. 
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HR Results:  Signal Derivative
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Figure 7.20. HR measurements obtained using PPG derivatives with resulting regression 
line (─) and line of identity (---). 
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Figure 7.21. Residual data plot from HR measurements based on PPG derivatives. 
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7.3.3 Spectral Analysis: 

Spectral analyses of the PPG signals were used to estimate cardiac frequencies. As shown 

in Figure 7.22, a 1-minute PPG segment (200 s/s) was transformed into the frequency 

domain using a 12,000-point FFT. The resolution of the transform was 0.0167 Hz, which 

allowed a HR measurement resolution of 1 bpm. The largest peak in the cardiac range of 

0.5 – 5 Hz was located since it represented the predominant cardiac frequency for the 1-

minute interval, and the frequency of the peak was multiplied by 60 to obtain a HR 

measurement in beats-per-minute. To assess method accuracy, HR measurements from 

each data set were plotted against reference HR values obtained through the BIOPAC, as 

shown in Figures 7.23 – 7.24. 
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Figure 7.22. PPG and corresponding FFT showing cardiac frequency component. 
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HR Results:  Spectral Analysis
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Figure 7.23. HR measurements obtained using spectral analysis with resulting 
regression line (─) and line of identity (---). 
  

Residual Plot:  Spectral Analysis
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Figure 7.24. Residual data plot from HR measurements based on spectral analysis. 
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Table 7.4. Assessment results for HR processing methods. 

Processing 
Methods R2 Value Bias 

(bpm) 
SEE 

(bpm) 
Moving Window 0.64 6.62 15.48 
Signal Derivative 0.99 0.43 1.27 
Spectral Analysis 0.90 -2.45 4.98 
 

 

 
7.4 HRV Processing Methods 

Of the HRV indices described in section 3.4, only those capable of providing short-term 

assessments (using less than 5 minutes of data) were selected for testing. Since field-

based monitoring applications are centered on detecting physiological deterioration and 

potentially detrimental conditions in a fast and efficient manner, long-term assessments 

requiring hours of monitoring (as normally practiced in a clinical environment) are not 

feasible in field triage situations. 

The short-term HRV indices selected for evaluation were all based on NN 

intervals measurements. As such, the IR PPG signals recorded during the HRV 

experiments were pre-processed prior to testing the individual measurement methods. NN 

intervals, measured in milliseconds, were extracted from every PPG signal. The NN data 

sets were then processed to obtain SDNN and COV index values. The remaining 4 

indices were based on the differences between successive NN intervals, so each set of 

NN intervals were processed further to obtain these values. The sets of NN differences 

were assessed to provide SDSD, RMSSD, NN50, and pNN50 index values for all data 

sets. Table 7.5 lists the HRV indices and their calculation methods. Individual index 

results are shown in Figures 7.25 – 7.36, plotted against reference values obtained 

through the BIOPAC, while the assessment results are summarized in Table 7.6. 
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Table 7.5. List of HRV indices and their calculation methods. 

HRV Indices Calculation Methods Physiological Indications 
SDNN 
[80, 81, 83, 85, 103] 

Standard deviation of NN 
intervals 

Measure of the overall 
variability in HR 

COV 
[85] 

Coefficient of variance 
(normalized SDNN = SDNN / 
mean NN interval) 

Changes in overall variability 
independent of changes in 
mean NN interval. 

SDSD 
[81] 

Standard deviation of 
successive NN differences 

Reflection of parasympathetic 
influence on the heart. 

RMSSD 
[80, 85, 103] 

Root-mean-square of 
successive NN differences 

Reflection of parasympathetic 
influence on the heart. 

NN50 
[85] 

Number of successive NN 
differences greater than 50 ms 

Index of vagal tone. 

pNN50 
[80, 85, 103] 

Proportion of successive NN 
differences greater than 50 ms 
(NN50 / # of NN differences) 

Normalized version of NN50, 
independent of HR. 

 

 

Table 7.6. Assessment results for HRV indices. 

HRV Indices R2 Value Normalized Bias Normalized SEE 

SDNN 0.97 0.09 0.72 
COV 0.97 0.09 0.03 
SDSD 0.68 0.44 2.75 
RMSSD 0.68 0.44 2.75 
NN50 0.71 0.78 4.08 
pNN50 0.75 0.51 2.29 
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Figure 7.25. SDNN index measurements with resulting regression line (─) and line of 
identity (---). 
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Figure 7.26. Residual plot for SDNN measurements. 
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Coefficient of Variance
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Figure 7.27. COV index measurements with resulting regression line (─) and line of 
identity (---). 
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Figure 7.28. Residual plot for COV measurements. 

 76



SD of Successive NN Differences

y = 0.89x + 14.77
R2 = 0.68

0

20

40

60

80

100

120

140

0 20 40 60 80 100

Reference SDSD (ms)

M
ea

su
re

d 
SD

SD
 (m

s)

N = 36

120

 

Figure 7.29. SDSD index measurements with resulting regression line (─) and line of 
identity (---). 
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Figure 7.30. Residual plot for SDSD measurements. 
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RMS of Successive NN Differences
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Figure 7.31. RMSSD index measurements with resulting regression line (─) and line of 
identity (---). 
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Figure 7.32. Residual plot for RMSSD measurements. 
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Figure 7.33. NN50 index measurements with resulting regression line (─) and line of 
identity (---). 
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Figure 7.34. Residual plot for NN50 measurements. 
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Proportion of Successive NN Differences > 50 ms
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Figure 7.35. pNN50 index measurements with resulting regression line (─) and line of 
identity (---). 
 

Residual Plot:  pNN50

-50

-40

-30

-20

-10

0

10

20

30

40

50

0 10 20 30 40 50 60

Reference pNN50 (%)

D
iff

er
en

ce
s 

(%
)

Mean  =  5.5
SD  =  ± 8.9

N = 36

 

Figure 7.36. Residual plot for pNN50 measurements. 
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7.5 RR Processing Methods 

As described in section 3.5, contributions from pulmonary activity can be observed in 3 

prominent facets of the PPG signal: baseline modulations, pulse amplitude modulations, 

and pulse interval fluctuations. When isolated, all 3 waveforms could potentially provide 

sufficient information for estimating RR. In addition, both cycle length assessment and 

spectral analysis are capable of performing accurate measurements. As a result, the 6 

unique processing methods listed in Table 7.7 were identified and selected for testing. 

As with HR analysis, IR signals were selected for RR analysis due to their 

consistently larger amplitudes. The recordings acquired during the RR experiments were 

each 90 seconds in length. The 15 seconds of signal at the beginning and end of a 

recording were excluded during analysis because sensor transients and reactions from the 

subjects occasionally caused abnormal events in these portions of the recordings. 

Therefore, only the middle 60 seconds were processed. Table 7.8 summarizes the results 

of the method assessments. 

7.5.1 Band-Pass Filtering: 

All filtering performed during the RR method assessments employed a band-pass filter 

(BPF) that removed signal components outside of the respiratory frequency range. The 

filter was an IIR Butterworth which allowed for a reduced number of coefficients 

compared to FIR filters and had a smooth passband with no significant ripple. Cutoffs 

were set at 0.05 and 0.7 Hz and a 6th order filter was required to maintain stability. 
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Table 7.7. List of processing methods capable of providing RR measurements. 

Analysis Methods General Description 
Signal Source: 
Band-Pass Filtered PPG 
Signal [33, 101] 

The waveform obtained by applying a BPF to a PPG signal. 

Signal Source: 
PPG Pulse Envelope 
[94] 

The waveform obtained by connecting the positive peaks of 
cardiac pulses using interpolation. 

Signal Source: 
IHR Fluctuations 
[34, 102] 

The waveform obtained by tracking changes in individual 
beat-to-beat intervals. 

Analysis Method: 
Measuring Cycle 
Lengths [33] 

A measure of the average length of the respiratory cycles in a 
waveform. 

Analysis Method: 
Spectral Analysis 
[94, 101, 102] 

Estimation of RR based on the predominant respiratory 
frequency. 

 

7.5.2 Waveform Analysis: 

RR measurements were obtained from respiratory waveforms in two ways. The first 

analysis method consisted of measuring the length of each full respiratory cycle in a 

waveform. As demonstrated in Figure 7.37a, respiratory cycles were measured between 

zero-crossings. The average of all cycle intervals in a 1-minute waveform was used to 

calculate a RR measurement in breaths-per-minute. 

 The second analysis method was an assessment of the waveform’s frequency. A 

4,500-point FFT was applied to the 60-second (75 s/s) respiratory waveform, as shown in 

Figure 7.37b. The resolution of the transform was 0.0167 Hz, which allowed a RR 

measurement resolution of 1 breath-per-minute. The largest peak in the respiratory range 

of 0.05 – 0.7 Hz was located since it represented the predominant respiratory frequency 

for the 1-minute interval. The frequency of the peak was multiplied by 60 to obtain a RR 

measurement in breaths-per-minute. 
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 Every respiratory waveform extracted from the PPGs was assessed using both 

analysis methods. 
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Figure 7.37. Waveform analyses used to obtain RR values based on (a) cycle length 
measurements and (b) frequency transforms. 
 

7.5.3 PPG Baseline Modulations: 

The PPGs recorded during the RR experiments were passed through the BPF described 

above to remove the DC component and isolate the respiratory-induced baseline 

modulations. The resulting respiratory waveforms were assessed using the two analysis 

methods described above. To evaluate accuracy, the RR measurements obtained from the 

PPGs were plotted against their reference values obtained through the BIOPAC, as 

shown in Figures 7.38 – 7.39. 
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Band-Pass Filtered PPG,
Measured Cycle Length
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Band-Pass Filtered PPG,
Spectral Analysis
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Figure 7.38. RR measurements based on band-pass filtered PPG signals obtained using 
(a) measured cycle length and (b) spectral analysis, with resulting regression lines (─) 
and lines of identity (---). 
 
*Note: Due to discrete values, some data points are plotted on top of each other. 
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Residual Plot:  Band-Pass Filtered PPG,
Measured Cycle Length
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Residual Plot:  Band-Pass Filtered PPG,
Spectral Analysis
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Figure 7.39. Residual data plot from RR measurements based on band-pass filtered PPG 
signals obtained using (a) measured cycle length and (b) spectral analysis. 
 
*Note: Due to discrete values, some data points are plotted on top of each other. 
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7.5.4 PPG Pulse Envelope: 

The positive peaks of the cardiac pulses in the PPGs were identified using derivatives. As 

shown in Figure 7.40, the tips of the peaks were connected using linear interpolation to 

produce signal envelopes based on the cardiac pulses. The envelopes were passed 

through the BPF to remove the offsets and smooth the waveforms. The resulting 

respiratory waveforms were assessed using the two analysis methods described above. To 

evaluate accuracy, the RR measurements obtained from the PPGs were plotted against 

their reference values obtained through the BIOPAC, as shown in Figures 7.41 – 7.42. 
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Figure 7.40. PPG with positive pulse envelope derived from cardiac peaks. 
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Positive Pulse Envelope,
Measured Cycle Length
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Positive Pulse Envelope,
Spectral Analysis
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Figure 7.41. RR measurements based on positive PPG pulse envelopes obtained using 
(a) measured cycle length and (b) spectral analysis, with resulting regression lines (─) 
and lines of identity (---). 
 
*Note: Due to discrete values, some data points are plotted on top of each other. 
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Residual Plot:  Positive Pulse Envelope,
Measured Cycle Length
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Residual Plot:  Positive Pulse Envelope,
Spectral Analysis
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Figure 7.42. Residual data plot from RR measurements based on positive PPG pulse 
envelopes obtained using (a) measured cycle length and (b) spectral analysis. 
 
*Note: Due to discrete values, some data points are plotted on top of each other. 
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7.5.5 Instantaneous Heart Rate (IHR) Fluctuations: 

Signal derivatives were used to identify cardiac pulses in the PPGs, and IHR values were 

calculated for each pulse interval. The data points in each interval were assigned the 

interval’s IHR value, producing a stepped waveform that fluctuated with HR, as shown in 

Figure 7.43. The stepped IHR waveform was passed through the BPF to remove its offset 

and smooth the sharp transitions. The resulting respiratory waveform was assessed using 

the two analysis methods described above. To evaluate accuracy, the RR measurements 

obtained from each data set were plotted against their reference values obtained through 

the BIOPAC, as shown in Figures 7.44 – 7.45. 
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Figure 7.43. PPG and corresponding IHR values. 
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IHR Fluctuations,
Measured Cycle Length
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IHR Fluctuations,
Spectral Analysis
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Figure 7.44. RR measurements based on IHR fluctuations obtained using (a) measured 
cycle length and (b) spectral analysis, with resulting regression lines (─) and lines of 
identity (---). 
 
*Note: Due to discrete values, some data points are plotted on top of each other. 
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Residual Plot:  IHR Fluctuations,
Measured Cycle Length
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Residual Plot:  IHR Fluctuations,
Spectral Analysis
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Figure 7.45. Residual data plot from RR measurements based on IHR fluctuations 
obtained using (a) measured cycle length and (b) spectral analysis. 
 
*Note: Due to discrete values, some data points are plotted on top of each other. 
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Table 7.8. Assessment results for RR processing methods. 

Signal 
Extraction Analysis Method R2 Value 

Bias 
(breaths-per-

minute) 

SEE 
(breaths-per-

minute) 
Cycle Length 0.39 -1.89 2.26 Band-Pass 

Filtered PPG Spectral Analysis 0.41 -1.57 3.37 
Cycle Length 0.76 -1.58 1.50 PPG Pulse 

Envelope Spectral Analysis 0.77 -0.34 2.09 
Cycle Length 0.78 -1.27 1.59 IHR 

Fluctuations Spectral Analysis 0.75 -0.53 2.17 
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8. DISCUSSION 

 

8.1 SpO2 Assessment 

8.1.1 Measurement Response Times: 

During assessment of the SpO2 processing methods, a difference in the response times 

was noted when comparing the SpO2 values provided by the processing methods to those 

obtained from the reference oximeter. As shown in Figure 8.1a, comparable drops in 

SpO2 were registered between 5 and 20 seconds apart by the reference source and all the 

processing methods. This shift was attributed to two factors: differences in sensor 

locations and differences in processing technique. 

Reference readings were obtained from a sensor attached to the finger while the 

processing methods assessed signals recorded from a sensor mounted on the forehead. 

Due to differences in the circulation between the heart and the two sensor sites, drops in 

SpO2 occur earlier at the forehead compared to the fingertip due to differences in 

circulation transport. 

Because of differences between software algorithms, the measurements produced 

by the reference source and the processing methods invariably responded at different 

rates to changes in SpO2. An example of the differences in response times can be 

observed in Figure 8.1b around 150 seconds when the subject’s SpO2 levels returned to a 

normal level after a desaturation episode. 

In order to accurately compare the SpO2 measurements from the two sites, each 

pair of measurement sets were shifted to align the drops in SpO2, as demonstrated in 

Figure 8.1b. 
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Figure 8.1. Measured and reference SpO2 values (a) as they are normally obtained in 
relation to each other and (b) after aligning the drops in SpO2. 
 

Since dynamic changes in SpO2 levels are difficult to match precisely between 

devices, accepted calibration procedures are based on comparing measurements obtained 

during steady-state conditions. A normal calibration setup consists of a subject monitored 

with the oximeter being calibrated, but also requires periodic arterial blood samples to be 
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analyzed simultaneously by a reference co-oximeter. To achieve hypoxemia, the 

percentage of inspired oxygen is controlled to induce a steady-state level change in SpO2. 

Once the measurements from both devices are stable, the values are recorded and 

compared. By repeating this procedure, the measurements from two different devices can 

be accurately compared over a wide range of SpO2 values without being affected by 

differences in sensor locations or measurement response times. 

8.1.2 Reference Measurement Error: 

For the preliminary SpO2 experiments performed, the most appropriate reference source 

was a commercial pulse oximeter. It is important to note that the measurements obtained 

from the reference oximeter contained a certain error which is typically about ±2%. 

During analysis, the error introduced by the reference source and the error inherent in the 

specific algorithmic based measurements are not separable. This makes it difficult to 

precisely quantitate the accuracy of the SpO2 processing methods that were tested. Future 

studies would need to consider the reference pulse oximeter inaccuracies in order to draw 

more definitive conclusions about the accuracy of each algorithm. In addition, steady-

state, as opposed to transient, hypoxia studies should be conducted to better characterize 

the performance of each algorithm. As described in section 8.1.1, these studies would 

consist of controlling inspired oxygen levels and obtaining periodic arterial blood 

samples, analyzed by a co-oximeter, to provide reference SpO2 measurements. 

8.1.3 Regression Analysis Index: 

This processing method is somewhat unique in that it provides a measurement index 

instead of a typical R value [52-56]. Accordingly, as shown in Figure 3.7, a change in 

SpO2 was correlated to a change in the slope of the regression line, where a steep slope 
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indicated high SpO2 and vice versa. The slope can range from 0, when parallel with the x-

axis, to an asymptote tending towards positive infinity, when parallel to the y-axis. 

Although neither of these extremes was possible, the relationship between the slope index 

and the SpO2 values became very non-linear, making it difficult to derive a simple 

equation that would accurately approximate the relationship. Therefore, the slope was 

used to calculate the angle of the regression line from the x-axis. Using the regression 

angle, the index ranged between 0 and 90 degrees, allowing a simple equation to better 

approximate the relationship between the regression slope and SpO2. 

 As demonstrated by this method, the calculation of an R value, derived using 

Equation 3.2, is not an absolute requirement when measuring SpO2. Any index that 

changes proportionally with SpO2 can potentially be employed when performing 

measurements. 
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8.2 HR Measurements 

8.2.1 Window Instability: 

The window-based processing method used in section 7.3 to identify the peaks of cardiac 

pulses produced some extremely high, exaggerated measurements. Upon closer 

examination of the PPG signals and the results in Figures 7.17 – 7.18, it was determined 

that the method was potentially unstable due to the adaptive property of the analysis 

window. The shape, frequency, and general form of cardiac pulses in PPGs can change 

over short periods of time. To account for these changes, specifically the frequency of the 

pulses, the width of the analysis window was adjusted after each identified peak to ensure 

that the next pulse could be better identified. Pronounced dicrotic notches, due to their 

shape, had the potential to be identified as pulse peaks, given the right conditions. Once a 

notch was detected as a peak, the adaptive window would shrink under the pretext of a 

faster HR. This, in turn, enhanced the sensitivity of the peak detection and increased the 

chances of identifying the following dicrotic notch as a pulse, perpetuating an unstable 

cycle. During periods of incorrect peak identification, as shown in Figure 8.2, the HR was 

estimated to be approximately twice its actual rate. As observed in the results, inaccurate 

measurements ranged as high as twice the reference values and were due almost 

exclusively to the detection of dicrotic notches. 
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Figure 8.2. A PPG signal (top) and its corresponding IHR values (bottom) as measured 
using the adaptive window method. Points identified as peaks are indicated by the arrows 
(▼). Note the point at 3 seconds when the dicrotic notch is first mistakenly identified as a 
pulse peak. 
  

8.2.2 Inaccuracy of Spectral Analysis: 

The cardiac components in the PPG signals were very strong and prominent and were 

expected to generate an obvious peak in the FFT. Therefore, the unexpected inaccuracy 

of HR measurements provided through spectral analysis prompted further investigation. 

An individual’s IHR naturally fluctuates over time, even between consecutive beat 

intervals. These IHR fluctuations can be generated by a variety of sources including 

pulmonary activity, physical exertion, or even mental stress. The constant fluctuations in 

IHR caused the power in the cardiac portions of the PPGs to spread across multiple 

frequencies, as seen in Figure 7.22 between 0.8 and 1.2 Hz. While identification of the 

most prominent cardiac peak in the FFT was relatively simple, the frequency did not 
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necessarily correspond to the average HR. As a result, the spectral-based measurements 

shown in Figures 7.23 – 7.24 did not provide acceptable accuracy when paired with their 

reference HR values. 

 However, the trend of the results supports a high correlation between measured 

HR and reference HR, despite the unexplained reduction in accuracy between 80 and 90 

bpm. Further work on spectral-based analysis could potentially improve HR 

measurement accuracy and allow this method to provide more accurate results. 

 

8.3 HRV Index Accuracy 

It is easily observed that the PPG waveform is strongly influenced by cardiac activity and 

contains much information that is also present in ECG signals. As such, HR 

measurements and HRV indices can be extracted from the PPG waveform. However, the 

results in section 7.4 showed that some HRV indices measured from the PPGs contained 

significant errors. Typically, most inaccurate measurements based on the PPGs estimated 

higher values than the reference values provided by the ECGs. Since the cardiac pulses 

were correctly identified in all PPG signals, it was concluded that an additional source of 

variance was present in the waveforms and not the methods of measurement. This 

additional variance was attributed to the cardiovascular factors that shape the cardiac 

pulse in the PPG. 

 The QRS complexes in ECG signals contain very distinct R-waves. The sharp 

nature of the periodic R-waves provides a means of accurately measuring the duration of 

each beat interval. The shapes of the corresponding PPG pulses, however, are much more 

rounded as they are reflections of pressure waves and changing blood volumes. As 
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depicted in Figure 3.8, a delay occurs between the R-wave in an ECG and the 

corresponding pulse peak in a PPG. This delay is the combined result of two 

physiological events. First, immediately following depolarization, the heart contracts and 

ejects blood from the left ventricle into the arterial pathways. This mechanical 

contraction is not instantaneous and occurs over a short period of time. A further delay 

between R-wave and PPG pulse is incurred as the pressure wave from the ejected bolus 

of blood traverses the systemic vasculature. It is the physiological state of the 

cardiovascular pathways that is most likely to induce additional fluctuations in the beat-

to-beat intervals of a PPG waveform. Factors such as arterial compliance, 

vasoconstriction, and vasodilation affect the speed at which the cardiac pressure wave 

moves through the systemic vasculature. Changes in the speed of the pressure wave in 

turn vary the delay between the R-wave and the corresponding PPG pulse. The end result 

is an additional source of variation that can be observed in PPG pulse intervals but is not 

present in ECG R-R intervals. 

 The nature of the above variance was reflected in the results of the HRV index 

measurements graphed in Figures 7.29 – 7.36. The HRV indices that were based on NN 

intervals (SDNN, COV) provided relatively accurate results, illustrating that the 

additional source of variation did not significantly affect the range of the NN intervals, as 

portrayed in Figure 8.3. Assessing the differences between successive NN intervals, 

which are also depicted in Figure 8.3, magnified the effects of the additional fluctuations. 

The indices based on these differences (SDSD, RMSSD, NN50, pNN50) repeatedly 

provided results that were higher than the corresponding reference indices that were 

based on ECGs. 
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Figure 8.3. A visual comparison between ECG and PPG measurements of NN intervals 
and successive differences of NN intervals. Note the increased variance present in the 
PPG measurements, especially in the successive differences. 
 

 

8.4 RR Measurement Degradation 

In general, it was found that measurements at low RR values from about 6 to 12 breaths-

per-minute were relatively accurate for all processing methods in section 7.5. Many 

results above 13 breaths-per-minute, however, were either inaccurate or showed 

significant variation between measurements. After closer examination of the respiratory 

and PPG waveforms, it was determined that the drop in measurement accuracy at higher 

RRs was most likely due to the voluntary increase in breathing rate performed during the 

experiments. 
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Figure 8.4. Respiratory waveforms and corresponding PPG signals. (a) A low-frequency 
RR of 7 breaths-per-minute is easily observed in a PPG signal with a HR of 60 bpm. (b) 
A voluntary increase in RR to 20 breaths-per-minute is difficult to observe in a PPG with 
a HR of 60 bpm. (c) An increase in HR to 90 bpm due to physical exertion allows a RR of 
20 breaths-per-minute to be more easily observed in the PPG. 
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 A natural increase in RR, through physical exertion for example, is often 

accompanied by a relatively proportional increase in HR [33], as demonstrated in Figure 

8.4c. Since the form of the PPG is a product of cardiovascular activity, an increase in 

cardiac output allows respiratory influences to propagate through the vasculature more 

efficiently. A voluntary increase in RR, as performed in the data recording experiments 

and shown in Figure 8.4b, did not necessarily demand a similar increase in HR. The 

comparably lower degree of cardiac activity transferred the respiratory influences less 

efficiently through the vasculature. The result was a reduction in the observable effects of 

pulmonary activity on the PPG and a corresponding drop in RR measurement accuracy. 

 

8.5 Regression Analyses

It was originally anticipated that the reference values and the measurements from the 

processing methods would have linear relationships for all 4 types of physiological 

measurements. However, data trends were observed in several results plots that suggested 

non-linear relationships could be present. Therefore, results from alternative regression 

analyses were examined to determine if different equations could better describe the 

relationships observed in the data. 

 In addition to the linear analyses, exponential, logarithmic, power, and 

polynomial regression curves were fitted to the data sets from chapter 7. The results are 

summarized in Tables 8.1 – 8.4. 

8.5.1 SpO2 Regression Results: 

Although a number of the measurement sets appeared to be non-linear to the extent of 

requiring a 4th-order equation, the SpO2 regression results in Table 8.1 did not show 
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many significant differences between the linear analyses and the alternative analyses. The 

data sets from the window-based measurements did demonstrate slightly better regression 

approximations using 4th-order polynomial equations. However, as the order of a 

polynomial equation increases, there is a greater chance of inadvertently justifying 

inaccurate or incorrect measurements. In addition, without performing proper calibration 

procedures as outlined in section 8.1.1, hysteresis can potentially cause abnormal 

relationships to be observed between the reference values and measured values in a data 

set. Considering these factors, the regression equations used to approximate the SpO2 

results should be limited to lower-order (1st or 2nd) polynomials following a proper 

calibration procedure. 

 
Table 8.1. R2 values from regression analyses of SpO2 measurement results. 

Polynomial 
AC DC Exponential Logarithmic Power

Linear Order 
2 

Order 
3 

Order 
4 

Avg. 0.96 0.96 0.96 0.96 0.96 0.96 0.97 
LPF 0.97 0.97 0.97 0.97 0.97 0.97 0.97 Diff. 
Wind. 0.96 0.96 0.96 0.96 0.96 0.96 0.97 
Avg. 0.97 0.97 0.97 0.97 0.97 0.97 0.97 
LPF 0.97 0.97 0.97 0.97 0.97 0.97 0.97 Pulses 
Wind. 0.97 0.97 0.97 0.97 0.97 0.97 0.97 
Avg. 0.93 0.92 0.92 0.92 0.94 0.95 0.95 
LPF 0.96 0.95 0.96 0.96 0.96 0.96 0.96 Regr. 
Wind. 0.96 0.95 0.96 0.95 0.96 0.96 0.96 
Avg. 0.89 0.89 0.89 0.90 0.91 0.93 0.94 
LPF 0.90 0.90 0.89 0.90 0.91 0.93 0.94 Wind. 
Wind. 0.89 0.89 0.89 0.89 0.90 0.93 0.94 

Spec. Spec. 0.96 0.96 0.96 0.96 0.96 0.96 0.97 
 

8.5.2 HR Regression Results: 

The HR regression results in Table 8.2 also showed very few significant differences 

between the linear analyses and the alternative analyses. The results for the window-
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based processing method did show a supposed exponential or power relationship between 

the measured and reference values. However, based on the examinations in section 8.2.1, 

these two forms of regression were most likely influenced by the method’s instability 

issues that appeared at elevated HRs. 

 
Table 8.2. R2 values from regression analyses of HR measurement results. 

Polynomial Methods Exponential Logarithmic Power
Linear Order 2 Order 3 

Window 0.74 0.64 0.75 0.64 0.64 0.66 
Derivative 0.98 0.98 0.99 0.99 0.99 0.99 
Spectral 0.89 0.88 0.89 0.90 0.91 0.91 
 

8.5.3 HRV Regression Results: 

The HRV regression results in Table 8.3 showed some mixed results. First, regression 

estimations for the SDNN and COV index measurements did not improve beyond that of 

the linear equations. Second, the results for the SDSD and RMSSD indices appeared to 

be better approximated with a power-based equation. Third, a slight improvement in 

regression estimation was observed with 3rd-order polynomial equations for the NN50 

and pNN50 indices. It should be noted that due to a number of values occurring at zero, 

the regression equations for these final two indices could not be approximated using 

logarithmic- or power-based equations. 

 
Table 8.3. R2 values from regression analyses of HRV measurement results. 

Polynomial Indices Exponential Logarithmic Power
Linear Order 2 Order 3 

SDNN 0.90 0.81 0.96 0.97 0.97 0.97 
COV 0.92 0.81 0.94 0.97 0.97 0.97 
SDSD 0.72 0.59 0.73 0.68 0.68 0.69 
RMSSD 0.72 0.59 0.73 0.68 0.68 0.69 
NN50 0.59 --- --- 0.71 0.72 0.74 
pNN50 0.58 --- --- 0.75 0.76 0.77 
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8.5.4 RR Regression Results: 

The RR regression results in Table 8.4 also showed variations in its assessments. The 3 

measurement sets analyzed in the time domain appeared to be best characterized using 

power regression equations, while the 3 measurement sets analyzed in the frequency 

domain were best estimated with their original linear equations. 

 
Table 8.4. R2 values from regression analyses of RR measurement results. 

Polynomial 
Waveform Analysis 

Method Exponential Logarithmic Power
Linear Order 

2 
Order 

3 
Time 0.41 0.39 0.43 0.39 0.39 0.43 BPF 
Freq 0.34 0.41 0.36 0.41 0.41 0.47 
Time 0.77 0.75 0.80 0.76 0.76 0.76 Envelope 
Freq 0.70 0.74 0.72 0.77 0.77 0.77 
Time 0.78 0.79 0.82 0.78 0.79 0.79 IHRs 
Freq 0.69 0.74 0.73 0.75 0.75 0.75 

 

 

8.6 Comparisons to Clinical Standards 

8.6.1 Clinical Standards: 

In order to be considered for implementation in a medical device, the accuracy of a 

processing method first had to be acceptable from a clinical standpoint. Since the SEE 

reflected the standard amount of error present in a set of results, it was compared to the 

measurement’s clinically acceptable error to determine whether a given processing 

method was a viable option for use in a wearable pulse oximeter. 

 The clinically acceptable accuracies for the physiological measurements are 

typically ±2% for SpO2 [28, 42, 44], ±4 bpm for HR [33, 43], and ±4 breaths-per-minute 

for RR [33, 43]. Since there is currently no universally employed index for measuring 
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HRV [79], no specific measurement accuracy is considered the standard for clinical 

acceptance. Therefore, the results from Student’s t-tests were examined to assure that the 

HRV indices based on the PPGs demonstrated a high degree of correlation with the 

reference values. Table 8.5 summarizes the evaluation results that determined which 

processing methods provided clinically acceptable measurements. 

8.6.2 SpO2 Reference Accuracy: 

Since invasive clinical experiments and calibration procedures were not feasible during 

preliminary testing, a standard commercial pulse oximeter (Nonin Xpod®) was employed 

as a reference source to characterize the SpO2 measurement methods being examined. 

However, as mentioned previously, measurements provided by the reference oximeter 

contained a certain degree of error and were only accurate to ±2%. For a given SpO2 

value, the maximum difference between clinically viable measurements from the 

reference source and the processing method would therefore occur if one source 

estimated high by 2% while the other estimated low by 2%. As a result, clinically valid 

processing methods could potentially produce as much as a 4% difference from the 

reference measurements. Therefore, all methods with an accuracy of less than 4% were 

considered potentially viable options and were included in the compiled software library. 

8.6.3 Comparison Results: 

 The 13 methods evaluated for measuring SpO2 all provided accuracies of less than 

±4%, indicating that they were all potentially viable options for implementation. 

However, measurements based on signal differentials and pulse amplitudes showed the 

best accuracy under laboratory conditions. 
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Table 8.5. Evaluation of processing methods for clinical acceptability. 

Measurement Methods 
Minimum 
Clinical 

Accuracy 

Method 
Accuracy 

Viable 
Measurement 
Technique? 

SpO2

Averaging 0.84 Yes 
LPF 0.82 Yes Differentials 
Window Min. 0.91 Yes 
Averaging 0.82 Yes 
LPF 0.91 Yes Pulse 

Amplitudes Window Min. 0.81 Yes 
Averaging 1.37 Yes 
LPF 1.11 Yes Regression 

Analysis Window Min. 0.96 Yes 
Averaging 1.38 Yes 
LPF 1.41 Yes Windowed 

Analysis Window Min. 1.44 Yes 
Spectral 
Analysis 

Spectral 
Analysis 

± 2 % 
(± 4 %)* 

0.84 Yes 

HR 

Moving Window 15.48 No 
Signal Derivative 1.27 Yes 
Spectral Analysis 

± 4 bpm 
4.98 No 

HRV 

SDNN p > 0.05 Yes 
COV p > 0.05 Yes 
SDSD p > 0.05 Yes 
RMSSD p > 0.05 Yes 
NN50 p > 0.05 Yes 
pNN50 

p > 0.05 

p > 0.05 Yes 

RR 

Cycle Length 2.26 No  (p < 0.05) Band-Pass 
Filtered PPG Spectral 3.37 No  (p < 0.05) 

Cycle Length 1.50 Yes Positive PPG 
Pulse Envelope Spectral 2.09 Yes 

Cycle Length 1.59 Yes IHR 
Fluctuations Spectral 

± 4 breaths-per-
minute 

2.17 Yes 
 
* The measurement accuracy of the reference oximeter was ±2%. Valid measurement 

methods could therefore potentially show a 4% difference from the reference 
measurements and still provide acceptable accuracy from a clinical standpoint.  
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 The results from the evaluations of the HR processing methods revealed that the 

moving window and spectral analysis methods produced significant amounts of error that 

resulted in unacceptable accuracies. SEE values of 15.5 and 5.0 for the window and 

spectral methods, respectively, were above the clinically desirable accuracy of 4 bpm. As 

a result, these methods were deemed inappropriate for clinical use and were not 

considered viable options for performing HR measurements in a pulse oximeter. Only the 

method based on signal derivatives provided acceptable measurement accuracy. 

 The 6 HRV indices extracted from the PPG waveforms all provided results that 

correlated significantly with the reference measurements. 

Of the 3 respiratory waveforms extracted from the PPGs, the baseline 

modulations obtained using the BPF produced very low degrees of accuracy. Although 

the average measurement accuracy was within acceptable limits, the measured RR values 

were found to be significantly different from the reference RR values (p < 0.05). As a 

result, baseline modulations obtained from a BPF were deemed inappropriate for 

accurately assessing respiratory activity and were not considered viable options for 

performing RR measurements in a pulse oximeter. Conversely, the positive pulse 

envelopes and IHR fluctuations provided relatively high degrees of accuracy that were 

within the clinically acceptable margin of error and showed no significant differences 

from the reference values. 
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8.7 Expanding Upon the Research Results 

8.7.1 Results Limitations: 

The results derived from this research fulfilled a crucial step in the development of a 

wearable pulse oximeter platform. However, these results cover a limited amount of 

knowledge which further studies must expand upon. Specifically, this work characterized 

the accuracies of different processing methods in a controlled laboratory setting from 

healthy subjects mostly during resting conditions. 

  The study has characterized signal processing methods across a limited range of 

physiological conditions. Specifically, SpO2 measurements were examined over the range 

of 85% – 100%, HR was assessed from approximately 60 – 115 bpm, and RR was 

evaluated between 6 – 20 breaths-per-minute. These ranges are typically observed in 

normal, healthy individuals at rest or during light physical activity. However, 

measurements can fall outside of these ranges as a result of injury, abnormal health 

conditions, or more intense physical activities. 

 The conditions in which experiments were performed were limited in scope. All 

activities took place in a controlled laboratory setting which was optimal for acquiring 

strong, stable PPG signals that allowed for the most accurate measurements to be 

attained. Although these conditions are satisfactory for the initial evaluations of different 

signal processing algorithms, they are not sufficient for evaluating each method during 

conditions that would normally be encountered during field-based applications. Low 

signal-to-noise ratios (SNR) or signal artifacts created by excessive motion or improper 

sensor attachment, for example, can degrade measurement accuracy during field testing. 
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 Lastly, the diversity and number of subjects tested were also limited. Since 

subjects were healthy and provided strong, clean PPG signals, the results observed did 

not accurately reflect the potential differences between individuals of a larger group. For 

example, low blood pressure or a significant reduction in peripheral perfusion during 

shock can reduce the strength, and subsequently the SNR, of the PPG signals. 

Consequently, a reduction in signal quality can affect measurement accuracy. 

8.7.2 Further Experiments: 

Further experiments will be required to characterize the limits of the processing methods. 

Firstly, evaluations in a controlled setting should be performed so that each method can 

be evaluated over a wider range of physiological values that might be encountered on the 

battlefield or during other relevant applications. For example, low SpO2 values around 

60%, HRs ranging between 30 – 300 bpm, and RRs between 3 and 40 braths-per-minute 

should be considered. 

Secondly, each algorithm must be evaluated when PPG signal quality has 

deteriorated. For example, experiments should be conducted to investigate the effects of 

various degrees of motion artifacts generated during walking, crawling, climbing, 

jogging, or running. 

 

8.8 Considerations for Future Method Selections 

During normal monitoring situations, the software algorithms in a wearable pulse 

oximeter are likely to encounter signals that have been corrupted by motion artifacts or 

degraded due to poor physiological conditions. While methods should be employed to 

minimize the effects of motion disturbances prior to analysis, algorithms that are capable 
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of providing accurate measurements during unfavorable conditions could extend the 

usefulness of a wearable device, allowing it to provide relevant physiological information 

over a more diverse range of monitoring situations. A number of processing methods 

evaluated in this research are known to be robust and can potentially provide adequate 

accuracy in the presence of degraded or corrupted PPG signals. 

 Signal differentials, pulse amplitudes, and window-based analyses perform 

measurements based on amplitude differences. Therefore, these methods are potentially 

more susceptible to signal corruptions that induce amplitude variations in the PPG 

signals. The regression [53, 54] and spectral [42] analyses, on the other hand, have been 

shown to be inherently insensitive to certain degrees of signal degradation such as short 

duration motion artifacts. 

 Although the analysis of signal derivatives was the only processing method to 

provide clinically acceptable results for HR measurements, the technique is highly 

susceptible to motion artifacts and sudden shifts in signal level. Conversely, the accuracy 

of spectral analysis was not quite within clinically acceptable standards, but its 

processing technique can potentially provide stable measurements in the presence of 

short-term artifacts and disruptive events [44]. Further work on improving the accuracy 

of this frequency-based method could allow a more robust algorithm to be implemented 

for measuring HR in a wearable pulse oximeter. 

 The SDNN and COV indices appeared to produce more accurate, stable HRV 

measurements than other indices, most likely due to their relative insensitivity to 

additional fluctuations introduced by the cardiovascular system, as discussed in section 

8.3. In addition, these indices are some of the more common short-term HRV 
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assessments used in clinical settings [71, 85] as they provide a general measure of 

variability in cardiac function as opposed to specifically reflecting parasympathetic 

activity or vagal tone. 

 Spectral analysis can potentially provide improved RR measurement stability in 

the presence of partially corrupted PPG waveforms. Although frequency-based analyses 

were less accurate than time-based analyses, we found that measurement inaccuracies 

were still clinically acceptable, and stable results over a wider range of monitoring 

conditions could prove to be a greater benefit since the measurements remain accurate. 

The assessment of IHR fluctuations is also recommended over the extraction of positive 

pulse envelopes, since the latter method is much more susceptible to PPG amplitude 

changes. 
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9. CONCLUSIONS AND RECOMMENDATIONS 

 

Acquiring accurate physiological measurements from patients is vital to providing 

effective triage and medical care in the field. As a result, the proper selection of a set of 

accurate processing methods is paramount in the development of a wearable medical 

device designed for field-based applications. This research evaluated different processing 

methods as a means of performing multiple physiological measurements based on a 

single set of photoplethysmograms acquired by a non-invasive wearable pulse oximeter. 

 Arterial oxygen saturation, heart rate, heart rate variability, and respiration rate 

were assessed in this research since these measurements provide vital physiological 

information to caregivers during medical evaluations. A series of in vivo experiments 

were conducted to record photoplethysmographic waveforms and corresponding 

reference values for these 4 types of physiological measurements. The data were then 

used to characterize the accuracies of the processing methods evaluated during the study. 

 Since a number of resulting data trends between sets of measured and reference 

values did not always appear to be linear, alternative regression equations were applied to 

the data sets to determine what form of equation best estimated the data’s relationship. It 

was found that arterial oxygen saturation measurements were best approximated with 1st 

(linear) and 2nd order polynomial regression equations, although proper calibration 

procedures must be performed prior to finalizing the equations. Derivative and spectral 

analysis methods employed to measure heart rate were best described with their original 

linear equations, while window-based analyses appeared to provide measurements that 

displayed a power relationship. For heart rate variability index measurements, most data 
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sets (SDNN, COV, NN50, pNN50) retained the use of linear equations for describing 

their regression curves. The data from the SDSD and RMSSD indices, however, appeared 

to be better described with power equations. Respiration rate measurement sets produced 

two distinct results. Time-based measurements were better approximated with power 

equations, while frequency-based measurements were described most accurately with 

linear equations. 

Processing methods that provided clinically acceptable accuracies during 

controlled conditions were identified as techniques that could potentially be implemented 

in a wearable pulse oximeter. A low degree of accuracy or correlation with reference 

measurements indicated that a particular method was not suitable for clinical use. 

Thirteen processing methods based on signal differentials, pulse amplitudes, regression 

slopes, windowed analysis, and spectral analysis achieved potentially acceptable levels of 

accuracy when measuring arterial oxygen saturation (standard clinical accuracy: ±2%). 

Due to measurement inaccuracies, 2 of the 3 methods examined for performing heart rate 

measurements were clinically unacceptable. The remaining method, based on signal 

derivatives, provided clinically acceptable heart rate measurements extracted from the 

photoplethysmographic waveforms (standard clinical accuracy: ±4 bpm). However, 

further work regarding spectral-based heart rate analysis could improve the algorithm’s 

accuracy and provide stable measurements in the presence of corrupted signals. Based on 

assessments using Student’s t-test (p < 0.05 was considered significant), 6 heart rate 

variability indices, 2 based on the lengths of beat intervals and 4 based on differences 

between successive beat intervals, were accurately extracted from the PPG signals for the 

purpose of characterizing heart rate variability. Lastly, respiration rate measurements 
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obtained from photoplethysmogram baseline modulations did not produce a significant 

correlation with reference values, so were not considered suitable for providing 

measurements during clinical applications. The remaining 4 processing methods, based 

on positive pulse envelopes and instantaneous heart rate fluctuations, did provide 

acceptable clinical accuracy for respiration rate measurements (standard clinical 

accuracy: ±4 breaths-per-minute). 

 Since the primary goal of the wearable pulse oximeter being developed at WPI is 

deployment in field applications, a broad range of monitoring conditions will be common 

during use. Therefore, it is recommended that additional evaluations be performed to 

further characterize the measurement accuracies of the processing methods in non-

laboratory conditions, including situations where distorted or noisy PPG signals are 

acquired. Motion artifacts, for example, can cause measurement accuracies to become 

clinically unacceptable, and their effects on the robustness of processing methods must be 

examined. Methods should then be developed to prevent or minimize these detrimental 

effects before they cause the results of the physiological measurements to deteriorate to 

unacceptable levels. Improved sensor attachment techniques or adaptive filtering, for 

example, can potentially be used to improve physiological measurement accuracy in 

field-based applications. 

 Although the miniaturized wearable pulse oximeter developed in our lab has been 

optimized for physical size and power, further evaluations must be conducted to 

understand the limitations of each signal processing method in terms of suitability for 

implementation in a microcontroller environment. Preliminary assessments of processing 

requirements suggest that the measurement algorithms will require a minimum amount of 
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resources. Program memory does not appear to be the limiting factor, since, on average, 

each method will require approximately 2KB of space. However, extensive data memory 

may be required. First, about 2KB of RAM will be necessary for retaining raw PPG data 

during analysis. Additionally, each implemented algorithm will require approximately 

100 bytes for basic processing procedures. If a Fast Fourier Transform is implemented to 

perform spectral analysis, additional data memory will be required. For example, a 64-

point FFT will require about 1280 bytes of RAM. Larger transforms will require 

proportionately greater amounts of memory. FFT routines will also be the only functions 

that will potentially require a custom data structure consisting of a pair of 32-bit floating-

point variables for the real and imaginary components of a single complex value. 

 It is estimated that the number of instructions executed per processing method 

will be about 30,000, while spectral analysis using a 64-point FFT is estimated to be 

about 300,000. Based on a clock speed of 10 MHz, basic algorithms would require 3 ms 

to execute while additional spectral analysis would require about 30 ms. Speeds lower 

than 10 MHz, such as the 4 MHz commonly used in miniaturized systems, could 

potentially cause a backlog of processing functions. Speeds at or above 10 MHz, such as 

the standard speeds of 20 and 40 MHz, are recommended to guarantee adequate 

processing time. 

 Based on these preliminary assessments, any moderate or high-end 

microcontroller providing 10KB of program memory, 5KB of data memory, and a clock 

speed of at least 10 MHz should be capable of implementing the software functions 

required to perform the desired physiological measurements. It should be noted, however, 
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that performing additional peripheral functions could increase the memory or speed 

requirements of the embedded microcontroller. 
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APPENDIX A – FLOWCHARTS FOR PROCESSING METHODS 

 

A.1 SpO2 Processing Methods 
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Figure A.1. DC measurement methods for SpO2 calculations: (a) Moving Average, (b) 
LPF, (c) Window Minimum. 
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Figure A.2. AC measurement methods for SpO2 calculations: (a) Average Differentials, 
(b) Pulse Amplitudes, (c) Window Analysis. 
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Figure A.3. AC measurement methods for SpO2 calculations: (a) Regression Analysis, 
(b) Spectral Analysis. 
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A.2 HR Processing Methods 
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Figure A.4. Processing methods for HR calculation: (a) Adaptive Moving Window, (b) 
Signal Derivative, (c) Spectral Analysis. 
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A.3 HRV Processing Methods 
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Figure A.5. Processing methods for HRV index calculations. 
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A.4 RR Processing Methods 
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Figure A.6. Waveform extraction for RR calculation: (a) Positive Cardiac Envelope, (b) 
IHR Fluctuations. 
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Figure A.7. Waveform extraction for RR calculation: Baseline Modulations. 
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Figure A.8. Waveform analysis for RR calculation: (a) Cycle Length Measurement, (b) 
Spectral Analysis. 
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